Enteral glutamine stimulates protein synthesis and decreases ubiquitin mRNA level in human gut mucosa

2003 ◽  
Vol 285 (2) ◽  
pp. G266-G273 ◽  
Author(s):  
Moïse Coëffier ◽  
Sophie Claeyssens ◽  
Bernadette Hecketsweiler ◽  
Alain Lavoinne ◽  
Philippe Ducrotté ◽  
...  

Effects of glutamine on whole body and intestinal protein synthesis and on intestinal proteolysis were assessed in humans. Two groups of healthy volunteers received in a random order enteral glutamine (0.8 mmol·kg body wt-1·h-1) compared either to saline or isonitrogenous amino acids. Intravenous [2H5]phenylalanine and [13C]leucine were simultaneously infused. After gas chromatography-mass spectrometry analysis, whole body protein turnover was estimated from traced plasma amino acid fluxes and the fractional synthesis rate (FSR) of gut mucosal protein was calculated from protein and intracellular phenylalanine and leucine enrichments in duodenal biopsies. mRNA levels for ubiquitin, cathepsin D, and m-calpain were analyzed in biopsies by RT-PCR. Glutamine significantly increased mucosal protein FSR compared with saline. Glutamine and amino acids had similar effects on FSR. The mRNA level for ubiquitin was significantly decreased after glutamine infusion compared with saline and amino acids, whereas cathepsin D and m-calpain mRNA levels were not affected. Enteral glutamine stimulates mucosal protein synthesis and may attenuate ubiquitin-dependent proteolysis and thus improve protein balance in human gut.

2006 ◽  
Vol 291 (3) ◽  
pp. E582-E586 ◽  
Author(s):  
S. Osowska ◽  
T. Duchemann ◽  
S. Walrand ◽  
A. Paillard ◽  
Y. Boirie ◽  
...  

Protein energy malnutrition is common in the elderly, especially in hospitalized patients. The development of strategies designed to correct such malnutrition is essential. Our working hypothesis was that poor response to nutrition with advancing age might be related to splanchnic sequestration of amino acids, which implies that fewer amino acids reach the systemic circulation. Administration of citrulline, which is not taken up by the liver, can offer a means of increasing whole body nitrogen availability and, hence, improve nutritional status. Thirty old (19 mo) rats were submitted to dietary restriction (50% of food intake) for 12 wk. They were randomized into three groups: 10 rats (R group) were killed and 20 others refed (90% of food intake) for 1 wk with a standard diet (NEAA group) or a citrulline-supplemented diet (Cit group). Before being killed, the rats were injected with [13C]valine, and the absolute protein synthesis rate (ASR) was measured in the tibialis using the flooding-dose method. When the rats were killed, the tibialis was removed for protein content analysis. Blood was sampled for amino acid and insulin analysis. The standard diet did not have any effect on protein synthesis or on the protein content in the muscle. Citrulline supplementation led to higher protein synthesis and protein content in muscle (117 ± 9, 120 ± 14, and 163 ± 4 mg/organ for protein content in R, NEAA, and Cit groups, P < 0.05). The ASR were 0.30 ± 0.04, 0.31 ± 0.04, and 0.56 ± 0.10 mg/h in the three groups, respectively (R and NEAA vs. Cit, P < 0.05). Insulinemia was significantly higher in the Cit group. For the first time, a realistic therapeutic approach is proposed to improve muscle protein content in muscle in frail state related to malnutrition in aging.


1980 ◽  
Vol 239 (4) ◽  
pp. E294-E294 ◽  

[15N]glycine (95+%) was infused into 170- to 220-g rats at a constant rate of 2-8 mg [15N]glycine/h for 2-24 h. Two sets of experiments were done. In one set, the rats were killed at varying time intervals, the liver was removed, and the fractional rate of liver protein synthesis was estimated from the amount of 15N incorporated into liver protein, the enrichment of the liver tissue free amino nitrogen, and the time course. In the second set of experiments, the rats were killed after a [15N]glycine infusion of 18-22 h. The whole-body protein synthesis rate was estimated from the urinary 15N enrichment at plateau by the method of Picou and Taylor-Roberts (Clin. Sci. 36: 288-296, 1967). It was compared against the value found by measuring the 15N enrichment of the whole-rat homogenate and calculating the synthesis rate from the formula of Garlick et al. [Biochem. J. 136: 935-945, 1973). The results are i) The 15N enrichment of glycine in either liver protein or liver tissue free amino acids was proportional to the 15N enrichment of the mixed protein or tissue free amino acids, respectively. ii) Continuous infusion-isotopic plateau methods underestimate the fractional protein synthesis rate of rat liver. iii) The methods of Picou and Taylor-Roberts and of Garlick et al. gave similar values for the whole-body protein synthesis rate.


1995 ◽  
Vol 269 (6) ◽  
pp. E996-E999 ◽  
Author(s):  
I. M. Nakshabendi ◽  
W. Obeidat ◽  
R. I. Russell ◽  
S. Downie ◽  
K. Smith ◽  
...  

We measured the rates of mucosal protein synthesis during the simultaneous delivery of [1-13C]leucine and [1-13C]valine delivered either intragastrically or intravenously to investigate any influence of the route of supply of the tracers. Dependent on the route, there were marked differences in the gradient of labeling between the plasma and intramucosal leucine and valine; i.e., for intravenous tracers the ratio was 1.73 +/- 0.16, but for intragastric tracers it was 0.65 +/- 0.12 (P < 0.05). Incorporation of intravenous tracer into mucosal protein was linear with time, and irrespective of tracer route, the calculated fractional rates of protein synthesis were identical when based on the intracellular labeling of the leucine or valine tracer, i.e., with intravenous 2.58 +/- 0.32%/h and with intragastric 2.45 +/- 0.36%/h. The results demonstrate that a robust and reproducible method of measurement of gastrointestinal mucosal protein synthesis has been developed and that use of either intragastric or intravenous routes of tracer administration gives comparable results. The high rates measured suggest that the gastrointestinal mucosa contributes substantially to whole body protein synthesis in normal healthy subjects.


2016 ◽  
Vol 311 (4) ◽  
pp. E671-E677 ◽  
Author(s):  
Sarah Everman ◽  
Christian Meyer ◽  
Lee Tran ◽  
Nyssa Hoffman ◽  
Chad C. Carroll ◽  
...  

Insulin stimulates muscle protein synthesis when the levels of total amino acids, or at least the essential amino acids, are at or above their postabsorptive concentrations. Among the essential amino acids, branched-chain amino acids (BCAA) have the primary role in stimulating muscle protein synthesis and are commonly sought alone to stimulate muscle protein synthesis in humans. Fourteen healthy young subjects were studied before and after insulin infusion to examine whether insulin stimulates muscle protein synthesis in relation to the availability of BCAA alone. One half of the subjects were studied in the presence of postabsorptive BCAA concentrations (control) and the other half in the presence of increased plasma BCAA (BCAA). Compared with that prior to the initiation of the insulin infusion, fractional synthesis rate of muscle protein (%/h) did not change ( P > 0.05) during insulin in either the control (0.04 ± 0.01 vs 0.05 ± 0.01) or the BCAA (0.05 ± 0.02 vs. 0.05 ± 0.01) experiments. Insulin decreased ( P < 0.01) whole body phenylalanine rate of appearance (μmol·kg−1·min−1), indicating suppression of muscle proteolysis, in both the control (1.02 ± 0.04 vs 0.76 ± 0.04) and the BCAA (0.89 ± 0.07 vs 0.61 ± 0.03) experiments, but the change was not different between the two experiments ( P > 0.05). In conclusion, insulin does not stimulate muscle protein synthesis in the presence of increased circulating levels of plasma BCAA alone. Insulin's suppressive effect on proteolysis is observed independently of the levels of circulating plasma BCAA.


1997 ◽  
Vol 77 (2) ◽  
pp. 197-212 ◽  
Author(s):  
Jens Kondrup ◽  
Klaus Nielsen ◽  
Anders Juul

Patients with cirrhosis of the liver require an increased amount of protein to achieve N balance. However, the utilization of protein with increased protein intake, i.e. the slope from regression analysis of N balance v. intake, is highly efficient (Nielsen et al. 1995). In the present study, protein requirement and protein utilization were investigated further by measuring protein synthesis and degradation. In two separate studies, five or six patients with cirrhosis of the liver were refed on a balanced diet for an average of 2 or 4 weeks. Protein and energy intakes were doubled in both studies. Initial and final whole-body protein metabolism was measured in the fed state by primed continous [15N]glycine infusion. Refeeding caused a statistically significant increase of about 30% in protein synthesis in both studies while protein degradation was only slightly affected. The increase in protein synthesis was associated with significant increases in plasma concentrations of total amino acids (25%), leucine (58%), isoleucine (82%), valine (72%), proline (48%) and triiodothyronine (27%) while insulin, growth hormone, insulin-like growth factor (IGF)-I and IGF-binding protein-3 were not changed significantly. The results indicate that the efficient protein utilization is due to increased protein synthesis, rather than decreased protein degradation, and suggest that increases in plasma amino acids may be responsible for the increased protein synthesis. A comparison of the patients who had a normal protein requirement with the patients who had an increased protein requirement suggests that the increased protein requirement is due to a primary increase in protein degradation. It is speculated that this is due to low levels of IGF-I secondary to impaired liver function, since initial plasma concentration of IGF-I was about 25% of control values and remained low during refeeding.


1997 ◽  
Vol 128 (2) ◽  
pp. 233-246 ◽  
Author(s):  
S. A. NEUTZE ◽  
J. M. GOODEN ◽  
V. H. ODDY

This study used an experimental model, described in a companion paper, to examine the effects of feed intake on protein turnover in the small intestine of lambs. Ten male castrate lambs (∼ 10 months old) were offered, via continuous feeders, either 400 (n = 5) or 1200 (n = 5) g/day lucerne chaff, and mean experimental liveweights were 28 and 33 kg respectively. All lambs were prepared with catheters in the cranial mesenteric vein (CMV), femoral artery (FA), jugular vein and abomasum, and a blood flow probe around the CMV. Cr-EDTA (0·139 mg Cr/ml, ∼ 0·2 ml/min) was infused abomasally for 24 h and L-[2,6-3H]phenylalanine (Phe) (420±9·35 μCi into the abomasum) and L-[U-14C]phenylalanine (49·6±3·59 μCi into the jugular vein) were also infused during the last 8 h. Blood from the CMV and FA was sampled during the isotope infusions. At the end of infusions, lambs were killed and tissue (n = 4) and digesta (n = 2) samples removed from the small intestine (SI) of each animal. Transfers of labelled and unlabelled Phe were measured between SI tissue, its lumen and blood, enabling both fractional and absolute rates of protein synthesis and gain to be estimated.Total SI mass increased significantly with feed intake (P < 0·05), although not on a liveweight basis. Fractional rates of protein gain in the SI tended to increase (P = 0·12) with feed intake; these rates were −16·2 (±13·7) and 23·3 (±15·2) % per day in lambs offered 400 and 1200 g/day respectively. Mean protein synthesis and fractional synthesis rates (FSR), calculated from the mean retention of 14C and 3H in SI tissue, were both positively affected by feed intake (0·01 < P < 0·05). The choice of free Phe pool for estimating precursor specific radioactivity (SRA) for protein synthesis had a major effect on FSR. Assuming that tissue free Phe SRA represented precursor SRA, mean FSR were 81 (±15) and 145 (±24) % per day in lambs offered 400 and 1200 g/day respectively. Corresponding estimates for free Phe SRA in the FA and CMV were 28 (±2·9) and 42 (±3·5) % per day on 400 g/day, and 61 (±2·9) and 94 (±6·0) on 1200 g/day. The correct value for protein synthesis was therefore in doubt, although indirect evidence suggested that blood SRA (either FA or CMV) may be closest to true precursor SRA. This evidence included (i) comparison with flooding dose estimates of FSR, (ii) comparison of 3H[ratio ]14C Phe SRA in free Phe pools with this ratio in SI protein, and (iii) the proportion of SI energy use associated with protein synthesis.Using the experimental model, the proportion of small intestinal protein synthesis exported was estimated as 0·13–0·27 (depending on the choice of precursor) and was unaffected by feed intake. The contribution of the small intestine to whole body protein synthesis tended to be higher in lambs offered 1200 g/day (0·21) than in those offered 400 g/day (0·13). The data obtained in this study suggested a role for the small intestine in modulating amino acid supply with changes in feed intake. At high intake (1200 g/day), the small intestine increases in mass and CMV uptake of amino acids is less than absorption from the lumen, while at low intake (400 g/day), this organ loses mass and CMV uptake of amino acids exceeds that absorbed. The implications of these findings are discussed.


2018 ◽  
Vol 314 (5) ◽  
pp. E457-E467 ◽  
Author(s):  
Jorn Trommelen ◽  
Imre W. K. Kouw ◽  
Andrew M. Holwerda ◽  
Tim Snijders ◽  
Shona L. Halson ◽  
...  

The purpose of this study was to determine the impact of ingesting 30 g casein protein with and without 2 g free leucine before sleep on myofibrillar protein synthesis rates during postexercise overnight recovery. Thirty-six healthy young men performed a single bout of resistance-type exercise in the evening (1945) after a full day of dietary standardization. Thirty minutes before sleep (2330), subjects ingested 30 g intrinsically l-[1-13C]phenylalanine-labeled protein with (PRO+leu, n = 12) or without (PRO, n = 12) 2 g free leucine, or a noncaloric placebo (PLA, n = 12). Continuous intravenous l-[ ring-2H5]phenylalanine, l-[1-13C]leucine, and l-[ ring-2H2]tyrosine infusions were applied. Blood and muscle tissue samples were collected to assess whole body protein net balance, myofibrillar protein synthesis rates, and overnight incorporation of dietary protein-derived amino acids into myofibrillar protein. Protein ingestion before sleep improved overnight whole body protein net balance ( P < 0.001). Myofibrillar protein synthesis rates did not differ significantly between treatments as assessed by l-[ ring-2H5]phenylalanine (0.057 ± 0.002, 0.055 ± 0.002, and 0.055 ± 0.004%/h for PLA, PRO, and PRO+leu, respectively; means ± SE; P = 0.850) or l-[1-13C]leucine (0.080 ± 0.004, 0.073 ± 0.004, and 0.083 ± 0.006%/h, respectively; P = 0.328). Myofibrillar l-[1-13C]phenylalanine enrichments increased following protein ingestion but did not differ between the PRO and PRO+leu treatments. In conclusion, protein ingestion before sleep improves whole body protein net balance and provides amino acids that are incorporated into myofibrillar protein during sleep. However, the ingestion of 30 g casein protein with or without additional free leucine before sleep does not increase muscle protein synthesis rates during postexercise overnight recovery.


1978 ◽  
Vol 235 (2) ◽  
pp. E165 ◽  
Author(s):  
J C Waterlow ◽  
M H Golden ◽  
P J Garlick

Whole-body protein synthesis was measured with [15N]glycine in malnourished and recovered infants and in obese patients. Comparisons were made: 1) between results obtained with single (S) and repeated (R) oral dosage of tracer; and 2) between urea and ammonia as end products. In the infants S and R gave similar values for the synthesis rate. With both methods of dosage, the values obtained with NH3 as end product were about two-thirds of those with urea. It is suggested that the cause of this result is that glycine contributes preferentially to the formation of urinary NH3. With NH3 as end product, a collection period of 12 h has been found to be suitable. With urea it is not possible to define an appropriate collection period. The combination of single dose of [15N]glycine with urinary NH3 as end product provides a simple method for measuring whole-body protein synthesis under clinical and field conditions. It can be repeated at short intervals and can give useful comparative information provided that conditions are carefully standardized. The reproducibility so far is +/- 13%.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sarah L. Gillen ◽  
Chiara Giacomelli ◽  
Kelly Hodge ◽  
Sara Zanivan ◽  
Martin Bushell ◽  
...  

Abstract Background Regulation of protein output at the level of translation allows for a rapid adaptation to dynamic changes to the cell’s requirements. This precise control of gene expression is achieved by complex and interlinked biochemical processes that modulate both the protein synthesis rate and stability of each individual mRNA. A major factor coordinating this regulation is the Ccr4-Not complex. Despite playing a role in most stages of the mRNA life cycle, no attempt has been made to take a global integrated view of how the Ccr4-Not complex affects gene expression. Results This study has taken a comprehensive approach to investigate post-transcriptional regulation mediated by the Ccr4-Not complex assessing steady-state mRNA levels, ribosome position, mRNA stability, and protein production transcriptome-wide. Depletion of the scaffold protein CNOT1 results in a global upregulation of mRNA stability and the preferential stabilization of mRNAs enriched for G/C-ending codons. We also uncover that mRNAs targeted to the ER for their translation have reduced translational efficiency when CNOT1 is depleted, specifically downstream of the signal sequence cleavage site. In contrast, translationally upregulated mRNAs are normally localized in p-bodies, contain disorder-promoting amino acids, and encode nuclear localized proteins. Finally, we identify ribosome pause sites that are resolved or induced by the depletion of CNOT1. Conclusions We define the key mRNA features that determine how the human Ccr4-Not complex differentially regulates mRNA fate and protein synthesis through a mechanism linked to codon composition, amino acid usage, and mRNA localization.


1998 ◽  
Vol 274 (3) ◽  
pp. E541-E546 ◽  
Author(s):  
Corinne Bouteloup-Demange ◽  
Yves Boirie ◽  
Pierre Déchelotte ◽  
Pierre Gachon ◽  
Bernard Beaufrère

Fractional protein synthesis rate (FSR) of duodenal mucosa was measured in two groups of six healthy young men, either in the fed state at the end of a 10-day standardized diet or after a 36-h fast. Protein synthesis rate was measured during a 9-h intravenous infusion of [13C]leucine and [2H5]phenylalanine. The fed group also received an intragastric tracer, [2H3]leucine, mixed with the liquid diet. At the end of the tracer infusion, an endoscopy was performed to take duodenal mucosal biopsies. The major results were that 1) duodenal mucosal protein synthesis was high, 48.0 ± 8.5% (SE)/day by use of intravenous leucine tracer and intracellular leucine enrichment; 2) it was not affected by feeding whatever the tracer or the precursor pool used for the calculations; 3) the two intravenous tracers gave different FSR values; and 4) with the intragastric tracer, FSR was 25–220% of the rate calculated with the intravenous tracer, depending on the precursor pool used for the calculation. Thus absolute values of FSR should be taken with caution, because they depend on the precursor pool chosen, the route of tracer administration, and the tracer itself. However, gut mucosal protein synthesis as assessed by an intravenous tracer is not affected by feeding in humans.


Sign in / Sign up

Export Citation Format

Share Document