cAMP inhibits bile acid-induced apoptosis by blocking caspase activation and cytochromecrelease

2002 ◽  
Vol 283 (3) ◽  
pp. G727-G738 ◽  
Author(s):  
Cynthia R. L. Webster ◽  
Paul Usechak ◽  
M. Sawkat Anwer

We have previously shown that cAMP protects against bile acid-induced apoptosis in cultured rat hepatocytes in a phosphoinositide 3-kinase (PI3K)-dependent manner. In the present studies, we investigated the mechanisms involved in this anti-apoptotic effect. Hepatocyte apoptosis induced by glycodeoxycholate (GCDC) was associated with mitochondrial depolarization, activation of caspases, the release of cytochrome c from the mitochondria, and translocation of BAX from the cytosol to the mitochondria. cAMP inhibited GCDC-induced apoptosis, caspase 3 and caspase 9 activation, and cytochrome c release in a PI3K-dependent manner. cAMP activated PI3K in p85 immunoprecipitates and resulted in PI3K-dependent activation of the survival kinase Akt. Chemical inhibition of Akt phosphorylation with SB-203580 partially blocked the protective effect of cAMP. cAMP resulted in wortmannin-independent phosphorylation of BAD and was associated with translocation of BAD from the mitochondria to the cytosol. These results suggest that GCDC-induced apoptosis in cultured rat hepatocytes proceeds through a caspase-dependent intracellular stress pathway and that the survival effect of cAMP is mediated in part by PI3K-dependent Akt activation at the level of the mitochondria.

2009 ◽  
Vol 296 (4) ◽  
pp. G764-G774 ◽  
Author(s):  
Anna Gates ◽  
Simon Hohenester ◽  
M. Sawkat Anwer ◽  
Cynthia R. L. Webster

Cyclic AMP protects against hepatocyte apoptosis by a protein kinase A-independent cAMP-GEF/phosphoinositide-3-kinase (PI3K)/Akt signaling pathway. However, the signaling pathway coupling cAMP-GEF with PI3K is unknown. The aim of this study was to investigate the role of Src tyrosine kinases (Src-TYK) and PI3K-p110 isoforms in this pathway. Studies were done in rat hepatocytes using the hydrophobic bile acid glycochenodeoxycholic acid (GCDC) to induce apoptosis. cAMP-binding guanine nucleotide exchange factors (cAMP-GEFs) were selectively activated by using 4-(4-chloro-phenylthio)-2′- O-methyladenosine-3′-5′-cyclic monophosphate (CPT-2-Me-cAMP), which sequentially phosphorylated Src-TYK (within 1 min) followed by Akt (within 5 min). The Src inhibitors PP2 and SU6656 inhibited basal and CPT-2-Me-cAMP-mediated Src and Akt phosphorylation. These inhibitors had no effect on CPT-2-Me-cAMP-mediated activation of Rap GTPases. CPT-2-Me-cAMP induced transient Src dependent autophosphorylation of the epidermal growth factor receptor (EGFR). Inhibition of the EGFR with AG 1478 partially inhibited the ability of CPT-2-Me to phosphorylate Akt. Whereas PP2 completely abolished the protective effect of CPT-2-Me-cAMP in GCDC induced apoptosis, AG 1478 partially inhibited the cytoprotective effect. CPT-2-Me-cAMP treatment resulted in Src-dependent activation of the p110 β and α subunits of PI3K, but only the latter was sensitive to inhibition with AG 1478. In conclusion, activation of cAMP-GEFs results in phosphorylation of Src-TYK and Akt and activation of the p110 β/α subunits of PI3K. Maximal cAMP-GEF-mediated Akt phosphorylation as well as protection from bile acid-induced apoptosis requires activation of Src-TYK and the EGFR. These studies support the existence of two pathways: cAMP-GEF/Rap/Src/PI3Kβ/Akt and cAMP-GEF/Rap/Src/EGFR/PI3Kα/Akt, both of which are necessary for maximal cytoprotective effect of cAMP-GEFs in hepatocytes.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Li ◽  
Yuanyuan Yang ◽  
You Li ◽  
Yueyue Zhao ◽  
Hong Jiang

Cisplatin- (CDDP) induced acute kidney injury (AKI) limits the clinical use of cisplatin. Several sirtuin (SIRT) family proteins are involved in AKI, while the roles of Sirt5 in cisplatin-induced AKI remain unknown. In the present study, we characterized the role and mechanism of Sirt5 in cisplatin-induced apoptosis using the human kidney 2 (HK-2) cell line. CDDP treatment decreased Sirt5 expression of HK-2 cells in a dose-dependent manner. In addition, Sirt5 overexpression enhanced the metabolic activity in CDDP-treated HK-2 cells while Sirt5 siRNA attenuated it. Forced expression of Sirt5 inhibited CDDP-induced apoptosis while Sirt5 siRNA showed the opposite effects. Accordingly, Sirt5 overexpression inhibited the level of caspase 3 cleavage and cytochrome c levels. Furthermore, we found that Sirt5 increased mitochondrial membrane potentials and ameliorated intracellular ROS production. Mitotracker Red staining indicated that Sirt5 overexpression was able to maintain the mitochondrial density during CDDP treatment. We also investigated possible downstream targets of Sirt5 and found that Sirt5 increased Nrf2, HO-1, and Bcl-2 while it decreased Bax protein expression. Sirt5 siRNA showed the opposite effect on these proteins. The levels of Nrf2, HO-1, and Bcl-2 proteins in HK-2 cells were also decreased after CDDP treatment. Moreover, Nrf2 and Bcl-2 siRNA partly abolished the protecting effect of Sirt5 on CDDP-induced apoptosis and cytochrome c release. Catalase inhibitor 3-AT also abolished the cytoprotective effect of Sirt5. Together, the results demonstrated that Sirt5 attenuated cisplatin-induced apoptosis and mitochondrial injury in human kidney HK-2 cells, possibly through the regulation of Nrf2/HO-1 and Bcl-2.


2015 ◽  
Vol 36 (3) ◽  
pp. 866-883 ◽  
Author(s):  
Annika Sommerfeld ◽  
Roland Reinehr ◽  
Dieter Häussinger

Background/Aims: Ursodeoxycholic acid, which in vivo is rapidly converted into its taurine conjugate, is frequently used for the treatment of cholestatic liver disease. Apart from its choleretic effects, tauroursodeoxycholate (TUDC) can protect hepatocytes from bile acid-induced apoptosis, but the mechanisms underlying its anti-apoptotic effects are poorly understood. Methods: These mechanisms were investigated in perfused rat liver and isolated rat hepatocytes. Results: It was found that TUDC inhibited the glycochenodeoxycholate (GCDC)-induced activation of the CD95 death receptor at the level of association between CD95 and the epidermal growth factor receptor. This was due to a rapid TUDC-induced β1-integrin-dependent cyclic AMP (cAMP) signal with induction of the dual specificity mitogen-activated protein (MAP) kinase phosphatase 1 (MKP-1), which prevented GCDC-induced phosphorylation of mitogen-activated protein kinase kinase 4 (MKK4) and c-jun-NH2-terminal kinase (JNK) activation. Furthermore, TUDC induced a protein kinase A (PKA)-mediated serine/threonine phosphorylation of the CD95, which was recently identified as an internalization signal for CD95. Furthermore, TUDC inhibited GCDC-induced CD95 targeting to the plasma membrane in a β1-integrin-and PKA-dependent manner. In line with this, the β1-integrin siRNA knockdown in sodium taurocholate cotransporting polypeptide (Ntcp)-transfected HepG2 cells abolished the protective effect of TUDC against GCDC-induced apoptosis. Conclusion: TUDC exerts its anti-apoptotic effect via a β1-integrin-mediated formation of cAMP, which prevents CD95 activation by hydrophobic bile acids at the levels of JNK activation and CD95 serine/threonine phosphorylation.


2011 ◽  
Vol 301 (2) ◽  
pp. G385-G400 ◽  
Author(s):  
A. Johnston ◽  
K. Ponzetti ◽  
M. S. Anwer ◽  
C. R. L. Webster

Cholestatic liver disorders are accompanied by the hepatic accumulation of cytotoxic bile acids that induce cell death. Increases in cAMP protect hepatocytes from bile acid-induced apoptosis by a cAMP-guanine exchange factor (cAMP-GEF)/phosphoinositide-3-kinase (PI3K)/Akt pathway. The aim of these studies was to identify the downstream substrate in this pathway and to determine at what level in the apoptotic cascade cytoprotection occurs. Since inhibitory phosphorylation of glycogen synthase kinase-3 (GSK) occurs downstream of PI3K/Akt and this phosphorylation has been implicated in cell survival, we conducted studies to determine whether GSK was downstream in cAMP-GEF/PI3K/Akt-mediated cytoprotection. Our results show that treatment of hepatocytes with the cAMP-GEF-specific analog, 4-(4-chlorophenylthio)-2′- O-methyladenosine-3′,5′-cAMP, results in PI3K-dependent phosphorylation of GSK. Direct chemical inhibition of GSK in rat hepatocytes or human HUH7-NTCP cells with several structurally and functionally distinct inhibitors including bromoindirubin-3′-oxime (BIO), maleimides (SB216763, SB415286), thiadiazolidine derivatives, and LiCl attenuates apoptosis induced by glycochenodeoxycholate (GCDC). In addition, genetic silencing of the GSK β isoform with small interfering RNA attenuates GCDC apoptosis in HUH7-NTCP cells. Adenoviral inhibition of the Rap1 blocks both cAMP-GEF-mediated cytoprotection against GCDC-induced apoptosis and Akt/GSK3β phosphorylation. GCDC-induced phosphorylation of the proapoptotic kinase, c-Jun NH2-terminal kinase (JNK) is inhibited by GSK inhibition or cAMP-GEF activation. GCDC-induced apoptosis is accompanied by phosphorylation of the endoplasmic reticulum stress markers pIEF2α and IRE-1, and pretreatment with the cAMP-GEF analog or GSK inhibitors prevents this phosphorylation. Collectively, our results support the presence of a cAMP/cAMP-GEF/Rap1/PI3K/Akt/GSKβ survival pathway in hepatocytes that inhibits bile acid-induced JNK phosphorylation.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Guy-Armel Bounda ◽  
Wang Zhou ◽  
Dan-dan Wang ◽  
Feng Yu

Objective. To study rhein-induced apoptosis signaling pathway and to investigate its molecular mechanisms in primary human hepatic cells.Results. Cell viability of HL-7702 cells treated with rhein showed significant decrease in dose-dependent manner. Following rhein treatment (25 μM, 50 μM, and 100 μM) for 12 h, the detection of apoptotic cells was significantly analyzed by flow cytometry and nuclear morphological changes by Hoechst 33258, respectively. Fatty degeneration studies showed upregulation level of the relevant hepatic markers (P< 0.01). Caspase activities expressed significant upregulation of caspase-3, caspase-9, and caspase-8. Moreover, apoptotic cells by rhein were significantly inhibited by Z-LEHD-FMK and Z-DEVD-FMK, caspase-9 inhibitor, and caspase-3 inhibitor, respectively. Overproduction of reactive oxygen species, lipid peroxidation, and loss of mitochondrial membrane potential were detected by fluorometry. Additionally, NAC, a ROS scavenger, significantly attenuated rhein-induced oxidative damage in HL-7702 cells. Furthermore, real-time qPCR results showed significant upregulation of p53, PUMA, Apaf-1, and Casp-9 and Casp-3 mRNA, with no significant changes of Fas and Cytochrome-c. Immunoblotting revealed significant Cytochrome-c release from mitochondria into cytosol and no change in Fas expression.Conclusion. Taken together, these observations suggested that rhein could induce apoptosis in HL-7702 cells via mitochondria-mediated signal pathway with involvement of oxidative stress mechanism.


2002 ◽  
Vol 103 (5) ◽  
pp. 475-485 ◽  
Author(s):  
Susana SOLÁ ◽  
Maria A. BRITO ◽  
Dora BRITES ◽  
José J.G. MOURA ◽  
Cecília M.P. RODRIGUES

The accumulation of toxic bile salts within the hepatocyte plays a key role in organ injury during liver disease. Deoxycholate (DC) and glycochenodeoxycholate (GCDC) induce apoptosis in vitro and in vivo, perhaps through direct perturbation of mitochondrial membrane structure and function. In contrast, ursodeoxycholate (UDC) and its taurine-conjugated form (TUDC) appear to be protective. We show here that hydrophobic bile salts induced apoptosis in cultured rat hepatocytes, without modulating the expression of pro-apoptotic Bax protein, and caused cytochrome c release in isolated mitochondria. Co-incubation with UDC and TUDC prevented cell death and efflux of mitochondrial factors. Using spin-labelling techniques and EPR spectroscopy analysis of isolated rat liver mitochondria, we found significant structural changes at the membrane—water surface in mitochondria exposed to hydrophobic bile salts, including modified lipid polarity and fluidity, altered protein order and increased oxidative injury. UDC, TUDC and cyclosporin A almost completely abrogated DC- and GCDC-induced membrane perturbations. We conclude that the toxicity of hydrophobic bile salts to hepatocytes is mediated by cytochrome c release, through a mechanism associated with marked direct effects on mitochondrial membrane lipid polarity and fluidity, protein order and redox status, without modulation of pro-apoptotic Bax expression. UDC and TUDC can directly suppress disruption of mitochondrial membrane structure, which may represent an important mechanism of hepatoprotection by these bile salts.


1999 ◽  
Vol 189 (1) ◽  
pp. 131-144 ◽  
Author(s):  
Glen MacDonald ◽  
Lianfa Shi ◽  
Christine Vande Velde ◽  
Judy Lieberman ◽  
Arnold H. Greenberg

Granzyme B (GraB) is required for the efficient activation of apoptosis by cytotoxic T lymphocytes and natural killer cells. We find that GraB and perforin induce severe mitochondrial perturbation as evidenced by the release of cytochrome c into the cytosol and suppression of transmembrane potential (Δψ). The earliest mitochondrial event was the release of cytochrome c, which occurred at the same time as caspase 3 processing and consistently before the activation of apoptosis. Granzyme K/perforin or perforin treatment, both of which kill target cells efficiently but are poor activators of apoptosis in short-term assays, did not induce rapid cytochrome c release. However, they suppressed Δψ and increased reactive oxygen species generation, indicating that mitochondrial dysfunction is also associated with this nonapoptotic cell death. Pretreatment with peptide caspase inhibitors zVAD-FMK or YVAD-CHO prevented GraB apoptosis and cytochrome c release, whereas DEVD-CHO blocked apoptosis but did not prevent cytochrome c release, indicating that caspases act both up- and downstream of mitochondria. Of additional interest, Δψ suppression mediated by GraK or GraB and perforin was not affected by zVAD-FMK and thus was caspase independent. Overexpression of Bcl-2 and Bcl-XL suppressed caspase activation, mitochondrial cytochrome c release, Δψ suppression, and apoptosis and cell death induced by GraB, GraK, or perforin. In an in vitro cell free system, GraB activates nuclear apoptosis in S-100 cytosol at high doses, however the addition of mitochondria amplified GraB activity over 15-fold. GraB- induced caspase 3 processing to p17 in S-100 cytosol was increased only threefold in the presence of mitochondria, suggesting that another caspase(s) participates in the mitochondrial amplification of GraB apoptosis. We conclude that GraB-induced apoptosis is highly amplified by mitochondria in a caspase-dependent manner but that GraB can also initiate caspase 3 processing and apoptosis in the absence of mitochondria.


Sign in / Sign up

Export Citation Format

Share Document