Effects of cardiac preload reduction and dobutamine on hepatosplanchnic blood flow regulation in porcine endotoxemia

2012 ◽  
Vol 303 (2) ◽  
pp. G247-G255 ◽  
Author(s):  
Stephan M. Jakob ◽  
Hendrik Bracht ◽  
Francesca Porta ◽  
Bruno M. Balsiger ◽  
Lukas Brander ◽  
...  

Insufficient cardiac preload and impaired contractility are frequent in early sepsis. We explored the effects of acute cardiac preload reduction and dobutamine on hepatic arterial (Qha) and portal venous (Qpv) blood flows during endotoxin infusion. We hypothesized that the hepatic arterial buffer response (HABR) is absent during preload reduction and reduced by dobutamine. In anesthetized pigs, endotoxin or vehicle ( n = 12, each) was randomly infused for 18 h. HABR was tested sequentially by constricting superior mesenteric artery (SMA) or inferior vena cava (IVC). Afterward, dobutamine at 2.5, 5.0, and 10.0 μg/kg per minute or another vehicle ( n = 6, each) was randomly administered in endotoxemic and control animals, and SMA was constricted during each dose. Systemic (cardiac output, thermodilution) and carotid, splanchnic, and renal blood flows (ultrasound Doppler) and blood pressures were measured before and during administration of each dobutamine dose. HABR was expressed as hepatic arterial pressure/flow ratio. Compared with controls, 18 h of endotoxin infusion was associated with decreased mean arterial blood pressure [49 ± 11 mmHg vs. 58 ± 8 mmHg (mean ± SD); P = 0.034], decreased renal blood flow, metabolic acidosis, and impaired HABR during SMA constriction [0.32 (0.18–1.32) mmHg/ml vs. 0.22 (0.08–0.60) mmHg/ml; P = 0.043]. IVC constriction resulted in decreased Qpv in both groups; whereas Qha remained unchanged in controls, it decreased after 18 h of endotoxemia ( P = 0.031; constriction-time-group interaction). One control and four endotoxemic animals died during the subsequent 6 h. The maximal increase of cardiac output during dobutamine infusion was 47% (22–134%) in controls vs. 53% (37–85%) in endotoxemic animals. The maximal Qpv increase was significant only in controls [24% (12–47%) of baseline ( P = 0.043) vs. 17% (−7–32%) in endotoxemia ( P = 0.109)]. Dobutamine influenced neither Qha nor HABR. Our data suggest that acute cardiac preload reduction is associated with preferential hepatic arterial perfusion initially but not after established endotoxemia. Dobutamine had no effect on the HABR.

PEDIATRICS ◽  
1977 ◽  
Vol 59 (6) ◽  
pp. 858-864
Author(s):  
G. Gabriele ◽  
C. R. Rosenfeld ◽  
D. E. Fixler ◽  
J. M. Wheeler

Continuous airway pressure delivered by a head-box is an accepted means of treating clinical hyaline membrane disease. To investigate hemodynamic alterations resulting from its use, eight newborn lambs, 1 to 6 days of age, were studied at 6 and 11 mm Hg of positive pressure, while spontaneously breathing room air. Organ blood flows and cardiac output were measured with 25 µ-diameter radioactive microspheres. Heart rate, left ventricular pressure, and arterial blood gases did not change during the study. Jugular venous pressures increased from 6.4 mm Hg to 18.6 and 24.2 mm Hg at 6 and 11 mm Hg, respectively (P < .005). Cardiac output decreased approximately 20% at either intrachamber pressure setting. Renal blood flow fell 21% at 11 mm Hg. No significant changes in blood flow were found in the brain, gastrointestinal tract, spleen, heart, or liver when compared to control flows. Of particular interest was the finding of a 28% reduction in ocular blood flow at 6 mm Hg and 52% at 11 mm Hg. From these results, we conclude that substantial cardiovascular alterations may occur during the application of head-box continuous airway pressure breathing, including a significant reduction in ocular blood flow.


1991 ◽  
Vol 261 (6) ◽  
pp. R1507-R1512 ◽  
Author(s):  
P. Wang ◽  
Z. F. Ba ◽  
I. H. Chaudry

Although hepatic blood flow increases significantly during early sepsis [as produced by cecal ligation and puncture (CLP)], it is not known whether this is due to the increase in portal or hepatic arterial blood flows. To study this, rats were subjected to CLP, after which they and sham-operated rats received either 3 or 6 ml normal saline/100 g body wt subcutaneously (i.e., all rats received crystalloid therapy). Blood flow in various organs was determined by using a radioactive microsphere technique at 5 and 20 h after CLP or sham operation. Portal blood flow was calculated as the sum of blood flows to the spleen, pancreas, gastrointestinal tract, and mesentery. Total hepatic blood flow was the sum of portal blood flow and hepatic arterial blood flow. A significant increase in portal blood flow and in total hepatic blood flow was observed at 5 h after CLP (i.e., early sepsis), and this was not altered by doubling the volume of crystalloid resuscitation after the induction of sepsis. In contrast, hepatic arterial blood flow during early sepsis was found to be similar to control; however, it was significantly reduced in late sepsis (i.e., 20 h after CLP). Cardiac output was significantly higher than the control in early sepsis. However, even in late sepsis, cardiac output and total hepatic blood flow were not significantly different from controls. These results indicate that the increased total hepatic blood flow during early hyperdynamic sepsis is solely due to the increased portal blood flow.


1983 ◽  
Vol 55 (4) ◽  
pp. 1173-1177 ◽  
Author(s):  
A. R. Hohimer ◽  
J. R. Hales ◽  
L. B. Rowell ◽  
O. A. Smith

Five chair-restrained baboons were trained with operant techniques and a food reward to perform dynamic leg exercise. Cardiac output and blood flows to most tissues were determined by radioactive microsphere distribution. After 2 min of exercise mean arterial blood pressure had increased by 11 +/- 3% (SE), heart rate by 34 +/- 7%, cardiac output by 50 +/- 12%, and O2 consumption by 157 +/- 17%. The blood flow to exercising leg muscle increased by 585 +/- 338% and to the myocardium by 35 +/- 19%. Blood flow to torso and limb skin fell by 38 +/- 4 and 38 +/- 6%, respectively, and similar reductions occurred in adipose tissue blood flow. Nonworking skeletal muscle blood flow decreased by 30 +/- 10%. Renal blood flow was lowered by 16 +/-2%. The lower visceral organs had more variable responses, but when grouped together total splanchnic blood flow fell by 21 +/- 9%. Blood flow to the brain was unchanged with exercise, whereas spinal cord perfusion increased 23 +/- 3%. Thus during short dynamic exercise baboons redistributed blood flow away from skin, fat, nonworking muscles, and visceral organs to supply the needs of exercising muscles. Our data suggest the baboon is a useful animal model for investigating vascular responses of tissues, such as torso skin, adipose, individual visceral organs, and the spinal cord, that cannot be examined in humans.


1991 ◽  
Vol 70 (5) ◽  
pp. 2120-2125 ◽  
Author(s):  
J. L. Theissen ◽  
H. M. Loick ◽  
B. B. Curry ◽  
L. D. Traber ◽  
D. N. Herndon ◽  
...  

Endotoxin [lipopolysaccharide (LPS)] has been reported to reduce hypoxic pulmonary vasoconstriction and thus increases venous admixture. The time course of this failure of pulmonary blood flow regulation was investigated in six chronically instrumented unanesthetized sheep after infusion of Escherichia coli LPS (1 microgram/kg). The change in left pulmonary arterial blood flow (LPBF, ultrasonic transit time) in response to unilateral lung hypoxia (10 min of N2 alternately to the left and right lungs) was compared before and at various time intervals after the administration of LPS. During baseline conditions, LPBF was 33% of total cardiac output and decreased to 15% when the left lung was ventilated with a hypoxic gas mixture. One hour after endotoxin infusion, LPBF remained at 33% of total cardiac output yet only decreased to 28% during the hypoxic challenge. The response to one-lung hypoxia was still significantly depressed 10 h post-LPS administration. It is concluded that hypoxic pulmonary vasoconstriction is almost completely abolished for a prolonged time period after a small dose of LPS.


1977 ◽  
Vol 232 (3) ◽  
pp. H231-H235 ◽  
Author(s):  
C. R. Rosenfeld

Cardiac output and organ blood flows were measured in 6 nonpregnant and 24 pregnant ewes from 38 to 141 days of gestation employing radionuclide-labeled microspheres. From the nonpregnant state to term increases in cardiac output, from 73.7 +/- 4.6 ml/min-kg of maternal weight to 148 +/- 2.4 ml/min-kg, and heart rate, from 88.5 +/- 10.3 to 106 +/- 4.6 beats/min, were noted, while mean arterial blood pressure was unchanged. Near term, the blood flows to the uterus and mammary gland represented approximately 18% of cardiac output. The blood flow to nonreproductive organs increased from 76.6 +/- 6.8 ml/min-kg of nonreproductive tissue in the nonpregnant state to 132 +/- 3.5 ml/min-kg at 130-140 days' gestation (P less than 0.01). No significant changes in renal blood flow were detected.


2014 ◽  
Vol 307 (6) ◽  
pp. G655-G663 ◽  
Author(s):  
Adriano J. Pereira ◽  
Victor Jeger ◽  
René Fahrner ◽  
Siamak Djafarzadeh ◽  
Michael Lensch ◽  
...  

Acute reduction of portal vein blood flow ( Qpv) increases hepatic arterial perfusion ( Qha) [the hepatic arterial buffer response (HABR)]. Angiotensin II (AT-II) reduces Qpv, but its effect on HABR is not known. We explored interactions of AT-II and enalapril with hepatic blood flow regulation. Twenty healthy anesthetized pigs were randomized to receive AT-II ( n = 8) from 5 to 61 ng/kg per min, enalapril ( n = 8) from 3 to 24 μg/kg per h, or saline ( n = 4). HABR was assessed by occluding portal vein and expressed as 1) ratio between changes in Qha and Qpv, 2) hepatic arterial conductance ( Cha). AT-II infusion increased mean arterial blood pressure from 74 (66–77) mmHg to 116 (109–130) mmHg (median, IQR; P < 0.0001) and decreased cardiac output, Qpv, and renal artery flow (−24%, −28% and −45%, respectively). The fraction of cardiac output of Qha, carotid, and femoral flows increased. With enalapril, blood pressure decreased, whereas cardiac output was maintained with flow redistribution favoring hepatic and renal arteries. In AT-II group, d Qha/d Qpv increased from 0.06 (0.03, 0.17) to 0.24 (0.13, 0.31) ( P = 0.002), but Cha during acute portal vein occlusion decreased from 4.3 (1.6, 6.6) to 2.9 (1.2, 3.7) ml/mmHg ( P = 0.003). Both variables remained unchanged in the enalapril group and in controls. AT-II infusion reduces portal flow in parallel with cardiac output and induces a dose-dependent redistribution of flow, favoring brain, hepatic artery, and peripheral tissues at the expense of renal perfusion. During HABR, AT-II decreases Cha but increases Qha compensation, likely as result of increased hepatic arterial perfusion pressure. Enalapril had no effect on HABR.


1979 ◽  
Vol 237 (6) ◽  
pp. H724-H729 ◽  
Author(s):  
D. I. Edelstone ◽  
A. M. Rudolph

In 16 chronically prepared fetal lambs we compared the systemic distribution of ductus venosus blood flow with that of abdominal inferior vena caval blood by simultaneously injecting microspheres labeled with different radionuclides into an umbilical vein and into the abdominal inferior vena cava. A significantly greater proportion of ductus venosus blood flow than of abdominal inferior vena caval blood flow supplied the brain, heart, and upper body; this resulted from streaming of ductus venosus blood flow within the thoracic inferior vena cava with preferential direction of that blood flow through the foramen ovale. Blood flows to upper and lower body structures and placenta calculated from umbilical venous microsphere injections and reference arterial blood samples did not differ from those computed fromabdominal inferior vena caval injections and reference samples. Thus, despite streamline blood flow within the fetal thoracic inferior vena cava, organ blood flows can be accurately measured with either an umbilical venous or an abdominal inferior vena caval injection of microspheres when either is combined with the appropriate reference arterial blood samples.


1990 ◽  
Vol 259 (6) ◽  
pp. G1010-G1018 ◽  
Author(s):  
T. Kawasaki ◽  
F. J. Carmichael ◽  
V. Saldivia ◽  
L. Roldan ◽  
H. Orrego

The relationship between portal tributary blood flow (PBF) and hepatic arterial blood flow (HAF) was studied in awake, unrestrained rats with the radiolabeled microsphere technique. Six distinct patterns of response emerged. In group A (PBF+, HAF 0), ethanol, acetate, glucagon, prostacyclin, and a mixed diet increased PBF without a change in HAF; in group B (PBF+, HAF+), adenosine and histamine increased both PBF and HAF; in group C (PBF 0, HAF+), isoflurane and triiodothyronine did not change PBF but increased HAF; and in group D (PBF-, HAF+), halothane and vasopressin decreased PBF and increased HAF. Acute partial portal vein ligation decreased PBF (56%) and increased HAF (436%). Hypoxia (7.5% O2) decreased PBF (28%) and increased HAF (110%). In group E (PBF+, HAF-), acute hepatic artery ligation increased PBF (35%) and reduced HAF (74%), while in group F (PBF-, HAF-), thyroidectomy reduced PBF and HAF (36 and 47%, respectively). All blood flow responses were accompanied by the expected changes in both portal tributary and hepatic arterial vascular resistances. The data suggest that the portal and hepatic arterial vascular territories have regulatory mechanisms that allow for independent changes.


1987 ◽  
Vol 62 (2) ◽  
pp. 606-610 ◽  
Author(s):  
P. G. Snell ◽  
W. H. Martin ◽  
J. C. Buckey ◽  
C. G. Blomqvist

Lower leg blood flow and vascular conductance were studied and related to maximal oxygen uptake in 15 sedentary men (28.5 +/- 1.2 yr, mean +/- SE) and 11 endurance-trained men (30.5 +/- 2.0 yr). Blood flows were obtained at rest and during reactive hyperemia produced by ischemic exercise to fatigue. Vascular conductance was computed from blood flow measured by venous occlusion plethysmography, and mean arterial blood pressure was determined by auscultation of the brachial artery. Resting blood flow and mean arterial pressure were similar in both groups (combined mean, 3.0 ml X min-1 X 100 ml-1 and 88.2 mmHg). After ischemic exercise, blood flows were 29- and 19-fold higher (P less than 0.001) than rest in trained (83.3 +/- 3.8 ml X min-1 X 100 ml-1) and sedentary subjects (61.5 +/- 2.3 ml X min-1 X 100 ml-1), respectively. Blood pressure and heart rate were only slightly elevated in both groups. Maximal vascular conductance was significantly higher (P less than 0.001) in the trained compared with the sedentary subjects. The correlation coefficients for maximal oxygen uptake vs. vascular conductance were 0.81 (trained) and 0.45 (sedentary). These data suggest that physical training increases the capacity for vasodilation in active limbs and also enables the trained individual to utilize a larger fraction of maximal vascular conductance than the sedentary subject.


1988 ◽  
Vol 65 (4) ◽  
pp. 1514-1519 ◽  
Author(s):  
M. Manohar

The present study was carried out 1) to compare blood flow in the costal and crural regions of the equine diaphragm during quiet breathing at rest and during graded exercise and 2) to determine the fraction of cardiac output needed to perfuse the diaphragm during near-maximal exercise. By the use of radionuclide-labeled 15-micron-diam microspheres injected into the left atrium, diaphragmatic and intercostal muscle blood flow was studied in 10 healthy ponies at rest and during three levels of exercise (moderate: 12 mph, heavy: 15 mph, and near-maximal: 19-20 mph) performed on a treadmill. At rest, in eucapnic ponies, costal (13 +/- 3 ml.min-1.100 g-1) and crural (13 +/- 2 ml.min-1.100 g-1) phrenic blood flows were similar, but the costal diaphragm received a much larger percentage of cardiac output (0.51 +/- 0.12% vs. 0.15 +/- 0.03% for crural diaphragm). Intercostal muscle perfusion at rest was significantly less than in either phrenic region. Graded exercise resulted in significant progressive increments in perfusion to these tissues. Although during exercise, crural diaphragmatic blood flow was not different from intercostal muscle blood flow, these values remained significantly less (P less than 0.01) than in the costal diaphragm. At moderate, heavy, and near-maximal exercise, costal diaphragmatic blood flow (123 +/- 12, 190 +/- 12, and 245 +/- 18 ml.min-1.100 g-1) was 143%, 162%, and 162%, respectively, of that for the crural diaphragm (86 +/- 10, 117 +/- 8, and 151 +/- 14 ml.min-1.100 g-1).(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document