Postprandial intestinal hyperemia: role of bile salts in the ileum

1981 ◽  
Vol 241 (6) ◽  
pp. G469-G477 ◽  
Author(s):  
P. R. Kvietys ◽  
J. M. McLendon ◽  
D. N. Granger

In an autoperfused dog ileum preparation, artificial pressure, venous outflow pressure, blood flow, and arteriovenous oxygen difference were measured while bile and bile salt solutions, at physiological concentrations, were placed in the lumen. Intraluminal placement of endogenous bile, synthetic bile, or bile salt solutions increased ileal blood flow (99 +/- 10, 94 +/- 20, and 104 +/- 17%, respectively) and oxygen uptake (30 +/- 5, 36 +/- 9, and 28 +/- 5%, respectively). Endogenous bile pretreated with cholestyramine, a bile salt-sequestering resin, did not alter ileal blood flow, yet increased ileal oxygen uptake by 11 +/- 3%, a response similar to that observed while Tyrode's solution (the vehicle) was in the lumen. Intra-arterial infusion of bile salts increased ileal blood flow in a dose-dependent manner, while not significantly altering ileal oxygen uptake. The results of the present study indicate that bile salts play an important role in the functional (postprandial) hyperemia in the ileum by 1) directly dilating the ileal vasculature and 2) enhancing ileal metabolism during their active absorption.

1997 ◽  
Vol 92 (2) ◽  
pp. 123-131 ◽  
Author(s):  
Masanari Shiramoto ◽  
Tsutomu Imaizumi ◽  
Yoshitaka Hirooka ◽  
Toyonari Endo ◽  
Takashi Namba ◽  
...  

1. It has been shown in animals that substance P as well as acetylcholine releases endothelium-derived nitric oxide and evokes vasodilatation and that ATP-induced vasodilatation is partially mediated by nitric oxide. The aim of this study was to examine whether vasodilator effects of substance P and ATP are mediated by nitric oxide in humans. 2. In healthy volunteers (n = 35), we measured forearm blood flow by a strain-gauge plethysmograph while infusing graded doses of acetylcholine, substance P, ATP or sodium nitroprusside into the brachial artery before and after infusion of NG-monomethyl-l-arginine (4 or 8 μmol/min for 5 min). In addition, we measured forearm blood flow while infusing substance P before and during infusion of l-arginine (10 mg/min, simultaneously), or before and 1 h after oral administration of indomethacin (75 mg). 3. Acetylcholine, substance P, ATP or sodium nitroprusside increased forearm blood flow in a dose-dependent manner. NG-Monomethyl-l-arginine decreased basal forearm blood flow and inhibited acetylcholine-induced vasodilatation but did not affect substance P-, ATP-, or sodium nitroprusside-induced vasodilatation. Neither supplementation of l-arginine nor pretreatment with indomethacin affected substance P-induced vasodilatation. 4. Our results suggest that, in the human forearm vessels, substance P-induced vasodilatation may not be mediated by either nitric oxide or prostaglandins and that ATP-induced vasodilatation may also not be mediated by nitric oxide.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Aghdas Dehghani ◽  
Shadan Saberi ◽  
Mehdi Nematbakhsh

Background. The accompanied role of Mas receptor (MasR), bradykinin (BK), and female sex hormone on renal blood flow (RBF) response to angiotensin 1-7 is not well defined. We investigated the role of MasR antagonist (A779) and BK on RBF response to Ang 1-7 infusion in ovariectomized estradiol-treated rats.Methods. Ovariectomized Wistar rats received estradiol (OVE) or vehicle (OV) for two weeks. Catheterized animals were subjected to BK and A799 infusion and mean arterial pressure (MAP), RBF, and renal vascular resistance (RVR) responses to Ang 1-7 (0, 100, and 300 ng kg−1 min−1) were determined.Results. Percentage change of RBF (%RBF) in response to Ang1-7 infusion increased in a dose-dependent manner. In the presence of BK, when MasR was not blocked, %RBF response to Ang 1-7 in OVE group was greater than OV group significantly (P<0.05). Infusion of 300 ng kg−1 min−1Ang 1-7 increased RBF by6.9±1.9% in OVE group versus0.9±1.8% in OV group. However when MasR was blocked, %RBF response to Ang 1-7 in OV group was greater than OVE group insignificantly.Conclusion. Coadministration of BK and A779 compared to BK alone increased RBF response to Ang 1-7 in vehicle treated rats. Such observation was not seen in estradiol treated rats.


1988 ◽  
Vol 254 (4) ◽  
pp. G495-G501 ◽  
Author(s):  
H. Orrego ◽  
F. J. Carmichael ◽  
V. Saldivia ◽  
H. G. Giles ◽  
S. Sandrin ◽  
...  

The mechanism by which ethanol induces an increase in portal vein blood flow was studied in rats using radiolabeled microspheres. Ethanol (2 g/kg) by gavage resulted in an increase of 50-70% in portal vein blood flow. The ethanol-induced increase in portal blood flow was suppressed by the adenosine receptor blocker 8-phenyltheophylline [ethanol, 61.8 +/- 4.1 ml.kg-1.min-1; ethanol + 8-phenyltheophylline (0.2 mg.kg-1.min-1), 44.2 +/- 2.0 ml.kg-1.min-1; P less than 0.05]. By itself, 8-phenyltheophylline (0.2 mg.kg-1.min-1) was without effect on cardiac output or portal blood flow. Adenosine infusion resulted in a dose-dependent increase in portal blood flow with a maximal effect at a dose of 0.17 mg.kg-1.min-1 (control, 41.3 +/- 2.3; adenosine, 81.7 +/- 8.0 ml.kg-1.min-1; P less than 0.05). This adenosine-induced increase in portal blood flow was inhibited by 8-phenyltheophylline in a dose-dependent manner [adenosine, 81.7 +/- 8.0 ml.kg-1.min-1; adenosine + 8-phenyltheophylline (0.2 mg.kg-1.min-1), 49.8 +/- 6.6 ml.kg-1.min; P less than 0.05]. Both alcohol and adenosine significantly reduced preportal vascular resistance by 40% (P less than 0.02) and 60% (P less than 0.01), respectively. These effects were fully suppressed by 8-phenyltheophylline. It is concluded that adenosine is a likely candidate to mediate the ethanol-induced increase in portal vein blood flow. It is suggested that an increase in circulating acetate and liver hypoxia may mediate the effects of alcohol by increasing tissue and interstitial adenosine levels.


1982 ◽  
Vol 242 (3) ◽  
pp. G202-G208 ◽  
Author(s):  
P. R. Kvietys ◽  
D. N. Granger

In autoperfused and pump-perfused preparations of canine ileum, arterial pressure, venous outflow pressure, blood flow, and arteriovenous oxygen difference were measured while blood flow was altered either mechanically or by graded intra-arterial infusions of isoproterenol, adenosine, or 2,4-dinitrophenol. In pump-perfused preparations, mechanical alterations in blood flow resulted in opposite changes in arteriovenous oxygen difference, so that ileal oxygen uptake was independent of blood flow over the range of 30-140 ml.min-1.100 g-1. Only at flow rates below 30 ml.min-1.100 g-1 was oxygen uptake dependent on blood flow. Isoproterenol, adenosine, and dinitrophenol produced dose-dependent increases in blood flow under free-flow conditions and decreases in perfusion pressure under constant-flow conditions. Ileal oxygen uptake was not affected by isoproterenol, decreased by adenosine, and increased by dinitrophenol. The effects of these drugs on intestinal oxygen uptake are in accord with their effects on oxygen consumption in vitro. These results suggest that vasodilators will not alter intestinal oxygen uptake in autoperfused preparations in which oxygen uptake is independent of blood flow, unless they exert an effect on oxidative metabolism.


1989 ◽  
Vol 257 (6) ◽  
pp. G969-G976
Author(s):  
O. Subero ◽  
P. Lobo ◽  
J. Chacin

The role of extracellular Ca2+ in metabolic effects induced by theophylline and histamine was investigated in the isolated toad gastric mucosa. Primary and secondary effects on metabolism were differentiated by using K(+)-free solutions, which blocked the secretory responses but not the metabolic ones. The stimulation of respiration induced by theophylline and histamine was dose dependent and was significantly decreased by Ca2(+)-free solutions. In the presence of 1.8 mM Ca2+, the rate of glycogen breakdown was increased by theophylline in a dose-dependent manner and the dose-response curve was somewhat similar to that obtained with oxygen uptake. This effect was inhibited by incubation in Ca2(+)-free solutions. Ca2+ stimulated the rate of glycogen utilization in a concentration-dependent manner. The rates of oxidation of exogenous glucose and pyruvate were significantly inhibited by Ca2(+)-free solutions in theophylline- and histamine-stimulated mucosa, whereas the rates of oxidation of butyrate and acetate were not significantly affected. The Ca2+ ionophore A23187 significantly stimulated the rate of oxygen uptake and this response was not blocked by omeprazole and Sch 28080, two specific inhibitors of gastric H(+)-K(+)-ATPase. The results indicate that Ca2+ is required for optimal stimulation of carbohydrate catabolism in the toad gastric mucosa.


1996 ◽  
Vol 76 (01) ◽  
pp. 111-117 ◽  
Author(s):  
Yasuto Sasaki ◽  
Junji Seki ◽  
John C Giddings ◽  
Junichiro Yamamoto

SummarySodium nitroprusside (SNP) and 3-morpholinosydnonimine (SIN-1), are known to liberate nitric oxide (NO). In this study the effects of SNP and SIN-1 on thrombus formation in rat cerebral arterioles and venules in vivo were assessed using a helium-neon (He-Ne) laser. SNP infused at doses from 10 Μg/kg/h significantly inhibited thrombus formation in a dose dependent manner. This inhibition of thrombus formation was suppressed by methylene blue. SIN-1 at a dose of 100 Μg/kg/h also demonstrated a significant antithrombotic effect. Moreover, treatment with SNP increased vessel diameter in a dose dependent manner and enhanced the mean red cell velocity measured with a fiber-optic laser-Doppler anemometer microscope (FLDAM). Blood flow, calculated from the mean red cell velocity and vessel diameters was increased significantly during infusion. In contrast, mean wall shear rates in the arterioles and venules were not changed by SNP infusion. The results indicated that SNP and SIN-1 possessed potent antithrombotic activities, whilst SNP increased cerebral blood flow without changing wall shear rate. The findings suggest that the NO released by SNP and SIN-1 may be beneficial for the treatment and protection of cerebral infarction


2019 ◽  
Vol 17 (4) ◽  
pp. 426-431
Author(s):  
Jin Xuezhu ◽  
Li Jitong ◽  
Nie Leigang ◽  
Xue Junlai

The main purpose of this study is to investigate the role of citrus leaf extract in carbon tetrachloride-induced hepatic injury and its potential molecular mechanism. Carbon tetrachloride was used to construct hepatic injury animal model. To this end, rats were randomly divided into 4 groups: control, carbon tetrachloride-treated, and two carbon tetrachloride + citrus leaf extract-treated groups. The results show that citrus leaf extract treatment significantly reversed the effects of carbon tetrachloride on the body weight changes and liver index. Besides, treatment with citrus leaf extract also reduced the levels of serum liver enzymes and oxidative stress in a dose-dependent manner. H&E staining and western blotting suggested that citrus leaf extract could repair liver histological damage by regulating AMPK and Nrf-2.


2021 ◽  
Vol 22 (9) ◽  
pp. 4717
Author(s):  
Jin-Young Lee ◽  
Da-Ae Kim ◽  
Eun-Young Kim ◽  
Eun-Ju Chang ◽  
So-Jeong Park ◽  
...  

Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.


1990 ◽  
Vol 123 (2) ◽  
pp. 218-224 ◽  
Author(s):  
Xiangbing Wang ◽  
Noriyuki Sato ◽  
Monte A. Greer ◽  
Susan E. Greer ◽  
Staci McAdams

Abstract. The mechanism by which 30% medium hyposmolarity induces PRL secretion by GH4C1 cells was compared with that induced by 100 nmol/l TRH or 30 mmol/l K+. Removing medium Ca2+, blocking Ca2+ channels with 50 μmol/l verapamil, or inhibiting calmodulin activation with 20 μmol/l trifluoperazine, 10 μmol/l chlorpromazine or 10 μmol/l pimozide almost completely blocked hyposmolarity-induced secretion. The smooth muscle relaxant, W-7, which is believed relatively specific in inhibiting the Ca2+-calmodulin interaction, depressed hyposmolarity-induced PRL secretion in a dose-dependent manner (r = −0.991, p<0.01 ). The above drugs also blocked or decreased high K+-induced secretion, but had much less effect on TRH-induced secretion. Secretion induced by TRH, hyposmolarity, or high K+ was optimal at pH 7.3-7.65 and was significantly depressed at pH 6.0 or 8.0, indicating that release of hormone induced by all 3 stimuli is due to an active cell process requiring a physiologic extracellular pH and is not produced by nonspecific cell toxicity. The data suggest hyposmolarity and high K+ may share some similarities in their mechanism of stimulating secretion, which is different from that of TRH.


1997 ◽  
Vol 17 (12) ◽  
pp. 1309-1318 ◽  
Author(s):  
Naoaki Horinaka ◽  
Tang-Yong Kuang ◽  
Hazel Pak ◽  
Robert Wang ◽  
Jane Jehle ◽  
...  

The possibility that adenosine and ATP-sensitive potassium channels (KATP) might be involved in the mechanisms of the increases in cerebral blood flow (CBF) that occur in insulin-induced hypoglycemia was examined. Cerebral blood flow was measured by the [14C]iodoantipyrine method in conscious rats during insulin-induced, moderate hypoglycemia (2 to 3 mmol/L glucose in arterial plasma) after intravenous injections of 10 to 20 mg/kg of caffeine, an adenosine receptor antagonist, or intracisternal infusion of 1 to 2 μmol/L glibenclamide, a KATP channel inhibitor. Cerebral blood flow was also measured in corresponding normoglycemic and drug-free control groups. Cerebral blood flow was 51% higher in untreated hypoglycemic than in untreated normoglycemic rats ( P < 0.01). Caffeine had a small, statistically insignificant effect on CBF in normoglycemic rats, but reduced the CBF response to hypoglycemia in a dose-dependent manner, i.e., 27% increase with 10 mg/kg and complete elimination with 20 mg/kg. Chemical determinations by HPLC in extracts of freeze-blown brains showed significant increases in the levels of adenosine and its degradation products, inosine and hypoxanthine, during hypoglycemia ( P < 0.05). Intracisternal glibenclamide had little effect on CBF in normoglycemia, but, like caffeine, produced dose-dependent reductions in the magnitude of the increases in CBF during hypoglycemia, i.e., +66% with glibenclamide-free artificial CSF administration, +25% with 1 μmol/L glibenclamide, and almost complete blockade (+5%) with 2 μmol/L glibenclamide. These results suggest that adenosine and KATP channels may play a role in the increases in CBF during hypoglycemia.


Sign in / Sign up

Export Citation Format

Share Document