Polyamine depletion arrests growth of IEC-6 and Caco-2 cells by different mechanisms

2001 ◽  
Vol 281 (1) ◽  
pp. G37-G43 ◽  
Author(s):  
Ramesh M. Ray ◽  
Shirley A. McCormack ◽  
Leonard R. Johnson

The polyamines spermidine and spermine and their precursor, putrescine, are required for the growth and proliferation of eukaryotic cells. This study compares and contrasts growth arrest caused by polyamine depletion in the untransformed IEC-6 cell line with that in the p53-mutated colon cancer Caco-2 cell line. Cells were grown in the presence or absence of α-difluoromethylornithine (DFMO), a specific inhibitor of ornithine decarboxylase, the first rate-limiting enzyme in the synthesis of polyamines. Depletion of polyamines inhibited the growth of both cell lines equally and over the same time frame. However, whereas IEC-6 cells were arrested in the G1 phase of the cell cycle, there was no accumulation of Caco-2 cells in any particular phase. In IEC-6 cells, growth arrest was accompanied by elevated levels of p53 and p21Waf1/Cip1 (p21). There were no changes in p53 levels in Caco-2 cells. Levels of p21 increased in Caco-2 cells on day 2 without any effect on cell cycle progression. The amount of cyclin-dependent kinase (Cdk)2 protein was unchanged by polyamine depletion in both cell lines. However, the activity of Cdk2 was significantly inhibited by DFMO in IEC-6 cells. These data suggest that in the untransformed IEC-6 cells the regulation of Cdk2 activity and progression through the cell cycle are p53- and p21 dependent. Growth arrest in the p53-mutated Caco-2 line after polyamine depletion occurs by a different, yet unknown, mechanism.

2007 ◽  
Vol 4 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Masaki Kawamura ◽  
Hirotake Kasai

We examined the effects of hemicellulase-treatedAgaricus blazei(AB fraction H, ABH) on growth of several tumor cell lines. ABH inhibited the proliferation of some cell lines without cytotoxic effects. It markedly prolonged the S phase of the cell cycle. ABH also induced mitochondria-mediated apoptosis in different cell lines. However, it had no impact on the growth of other cell lines. ABH induced strong activation of p38 mitogen-activated protein kinase (MAPK) in the cells in which it evoked apoptosis. On the other hand, ABH showed only a weak p38 activation effect in those cell lines in which it delayed cell cycle progression with little induction of apoptosis. However, p38 MAPK-specific inhibitor inhibited both ABH-induced effects, and ABH also caused apoptosis in the latter cells under conditions of high p38 MAPK activity induced by combined treatment with TNF-α. These results indicate that the responsiveness of p38 MAPK to ABH, which differs between cell lines, determines subsequent cellular responses on cell growth.


2013 ◽  
Vol 3 (1) ◽  
pp. 36-46 ◽  
Author(s):  
Eva Wessel Stratford ◽  
Jeanette Daffinrud ◽  
Else Munthe ◽  
Russell Castro ◽  
Jo Waaler ◽  
...  

2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 12030-12030
Author(s):  
A. A. Epenetos ◽  
K. Pors ◽  
P. J. Smith ◽  
L. H. Patterson

12030 Introduction: DNA topoisomerase II (topo II) is crucial to the maintenance of cancer cells in a proliferative state. DNA intercalation is a crucial part of topo II inhibition by DNA affinic anthraquinones. Potent cytotoxicity of anthraquinones, is related to their slow rate of dissociation from DNA, the kinetics of which favours long-term trapping of the topo-DNA complexes. Currently available DNA interacting agents at best promote a transient inhibition of topo II, since the topo-drug-DNA ternary complex is reversed by removal of the intracellular drug pool. Results: Alchemix cell cycle events: DNA content and Cyclin B1 expression were measured using flow cytometry and a p53 functional human osteosarcoma cell line (U2-OS) The results indicate: (ii) slow pan-cell cycle progression and mitotic commitment with a limited expression of G2 arrest, (iii) B1 cyclin tracking reveals that escape from Alchemix-induced cell cycle arrest in G2 is forcing some cells to enter polyploidy via an aberrant mitosis in keeping with topoisomerase II inhibition. Alchemix in vitro activity against the NCI human cell line panel including several drug resistant cancer cell lines had a mean IG50 = 49 nM. 11 of the 24 cell lines tested have an IG50 of <10 nM. Alchemix retains potent activity against chemotherapy resistant tumors including drug resistant ones. Conclusions: Alchemix possesses potent activity across a variety of different human tumors and significantly shows potent activity in cisplatin and anthracyline resistant human tumors Alchemix has pan-cell cycle effects. Multilevel targeting by Alchemix reduces the probability of evasion of cell cycle related pharmacodynamic responses. Results help explain the activity of Alchemix in both cisplatin and anthracycline resistant tumors in vitro and in vivo. [Table: see text]


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1511-1511
Author(s):  
Atsushi Nemoto ◽  
Takeshi Inukai ◽  
Koshi Akahane ◽  
Hiroko Honna- Oshiro ◽  
Kumiko Goi ◽  
...  

Abstract Abstract 1511 Since BCR-ABL plays a central role in cell cycle progression of Philadelphia-chromosome positive (Ph+) leukemia cells and CDK4/6 critically involves in G1-progression of cell cycle, we analyzed sensitivity of Ph+ leukemia cell lines to compounds that act as specific CDK4/6 inhibitors. H3-thymidine uptake assay showed that both PD183812 and CBC219476 significantly inhibited cell growth of Ph+ lymphoid leukemia cell lines (n=9) in comparison with Ph+ myeloid leukemia cell lines (n=7) and Ph- ALL cell lines (n=26). Thus, we next tested the anti-leukemic activity of PD0332991, a potent CDK4/6 inhibitor that is under phase II clinical study for solid tumor patients, and found that 8 of 9 Ph+ lymphoid leukemia cell lines showed extremely higher sensitivity to PD0332991; median IC50 was <25 nM. IC50 of Ph+ lymphoid leukemia cell lines was significantly lower than that of Ph+ myeloid cell lines (200 nM, n=7) and Ph-ALL cell lines (100nM, n=25). PD0332991 effectively dephosphorylated Rb protein (pRb), and subsequently induced G1 arrest on all of Ph+ lymphoid leukemia cell lines. Moreover, PD0332991 gradually induced cell death in 4 Ph+ lymphoid leukemia cell lines. Since CDK4/6 inhibitor acts depending on intact pRb, we analyzed protein and gene expression status of Rb. Of note, all Ph+ lymphoid leukemia cell lines expressed intact pRb except for one cell line that showed relative resistance to PD0332991. In contrast, pRb was almost undetectable in Ph+ myeloid cell lines in spite of comparable level of Rb gene expression, which might be mechanism for resistance to PD0332991. However, most of Ph- ALL cell lines had intact pRb expression in spite of their relative resistance to PD0332991, indicating that Rb status alone did not explain higher PD0332991-sensitivity of Ph+ lymphoid leukemia cell lines. Thus, we assumed that Ph+ lymphoid leukemia cells showed higher PD0332991-sensitivity probably because BCR-ABL regulates CDK4/6 expression for cell cycle progression. To clarify this assumption, we treated Ph+ lymphoid leukemia cell lines with imatinib and performed immunoblot analysis of cell cycle machineries such as CDKs, cyclines, and CDK inhibitors. Of note, CDK4 expression level was frequently downregulated by imatinib in Ph+ lymphoid leukemia cell lines. Moreover, imatinib-induced downregulation of CDK4 in Ph+ lymphoid leukemia cell line was abrogated by the addition of IL-7 and FLT3 ligand, which stimulated cell cycle progression of imatinib-treated Ph+ ALL cell line. LY294002, a PI3K inhibitor, but not U0126, a MAPK inhibitor, and AG490, an inhibitor for JAK/STAT pathway, efficiently downregulated CDK4 expression in Ph+ lymphoid leukemia cell lines. Gene expression level of CDK4 in Ph+ lymphoid leukemia cell lines was downregulated by imatinib, and lactastatin, an inhibitor of protein degradation, partially inhibited imatinib-induced downregulation of CDK4 protein in Ph+ lymphoid leukemia cell lines, indicating that BCR-ABL regulates CDK4 expression both in gene expression level and in protein degradation level. These findings indicated that Ph+ lymphoid leukemia cell lines showed higher sensitivity to PD0332991 since BCR-ABL induces cell cycle progression of Ph+ lymphoid leukemia cells by regulating CDK4 as one of downstream pathways. Accordingly, we tested if PD0332991 shows anti-leukemic activity in Ph+ lymphoid leukemia cells that have a T315I mutation of BCR-ABL. SU/SR is an imatinib-resistant Ph+ ALL cell line with T315I mutation (IC50 for imatinib >10 mM), which was established from SU-Ph2, an imatinib-sensitive Ph+ ALL cell line (IC50 for imatinib <0.1 mM), after long-term culture in the presence of gradually increasing concentration of imatinib. Of note, PD0332991 effectively dephosphorylated pRb and inhibited cell growth of both SU/SR and SU-Ph2. Our findings provide a rationale for efficacy of PD0332991 in the context of anti-leukemic therapy for lymphoid crisis of CML and Ph+ ALL patients even with T315I mutation in BCR-ABL. Disclosures: No relevant conflicts of interest to declare.


Oncogene ◽  
2000 ◽  
Vol 19 (4) ◽  
pp. 514-525 ◽  
Author(s):  
Torsten E Reichert ◽  
Shigeki Nagashima ◽  
Yoshiro Kashii ◽  
Joanna Stanson ◽  
Gui Gao ◽  
...  

2010 ◽  
pp. NA-NA ◽  
Author(s):  
Gabriele Spittau ◽  
Nicole Happel ◽  
Maik Behrendt ◽  
T. Ivo Chao ◽  
Kerstin Krieglstein ◽  
...  

1987 ◽  
Vol 7 (10) ◽  
pp. 3846-3852 ◽  
Author(s):  
T Nakajima ◽  
M Masuda-Murata ◽  
E Hara ◽  
K Oda

Rat 3Y1 cell lines that express either adenovirus type 12 E1A 13S mRNA or 12S mRNA in response to dexamethasone treatment were established by introduction of recombinant vector DNA containing the E1A 13S- or 12S-mRNA cDNA placed downstream of the hormone-inducible promoter of mouse mammary tumor virus. These cell lines were growth arrested, and the induction of cell cycle progression was analyzed by flow cytometry after switch on of the cDNA by the addition of dexamethasone. The results indicate that the 13S- or 12S-mRNA product alone has the ability to cause progression of the cell cycle at a similar rate. The simultaneous addition of epidermal growth factor accelerated the rate of cell cycle progression in the transition from the G0/G1 phase to the S phase.


Sign in / Sign up

Export Citation Format

Share Document