UDP-glucose modulates gastric function through P2Y14 receptor-dependent and -independent mechanisms

2009 ◽  
Vol 296 (4) ◽  
pp. G923-G930 ◽  
Author(s):  
Anna K. Bassil ◽  
Sophie Bourdu ◽  
Karen A. Townson ◽  
Alan Wheeldon ◽  
Emma M. Jarvie ◽  
...  

P2Y receptors have been reported to modulate gastrointestinal functions. The newest family member is the nucleotide-sugar receptor P2Y14. P2ry14 mRNA was detected throughout the rat gut, with the highest level being in the forestomach. We investigated the role of the receptor in stomach motility using cognate agonists and knockout (KO) mice. In rat isolated forestomach, 100 μM UDP-glucose and 100 μM UDP-galactose both increased the baseline muscle tension (BMT) by 6.2 ± 0.6 and 1.6 ± 0.6 mN ( P < 0.05, n = 3–4), respectively, and the amplitude of contractions during electrical field stimulation (EFS) by 3.7 ± 1.7 and 4.3 ± 2.5 mN ( P < 0.05, n = 3–4), respectively. In forestomach from wild-type (WT) mice, 100 μM UDP-glucose increased the BMT by 1.0 ± 0.1 mN ( P <0.05, n = 6) but this effect was lost in the KO mice (change of −0.1 ± 0.1 mN, n = 6). The 100 μM UDP-glucose also increased the contraction amplitude during EFS in this tissue from the WT animals (0.9 ± 0.4 mN, P < 0.05, n = 6) but not from the KO mice (0.0 ± 0.2 mN, n = 6). In vivo, UDP-glucose at 2,000 mg/kg ip reduced gastric emptying in rats by 49.7% ( P < 0.05, n = 4–6) and in WT and KO mice by 56.1 and 66.2%, respectively ( P < 0.05, n = 7–10) vs. saline-treated control animals. There was no significant difference in gastric emptying between WT and KO animals receiving either saline or d-glucose. These results demonstrate a novel function of the P2Y14 receptor associated with contractility in the rodent stomach that does not lead to altered gastric emptying after receptor deletion and an ability of UDP-glucose to delay gastric emptying without involving the P2Y14 receptor.

1995 ◽  
Vol 268 (3) ◽  
pp. G443-G450 ◽  
Author(s):  
S. Chakder ◽  
G. J. Rosenthal ◽  
S. Rattan

The purpose of the present investigation was to examine the influence of a nitric oxide scavenger, hemoglobin (Hb), on esophageal function. Intraluminal pressures of anesthetized opossums were recorded from lower esophageal sphincter (LES) and 1, 5, and 9 cm above the LES. The influence of a representative Hb-based oxygen carrier was examined on swallowing-induced esophageal peristalsis and LES relaxation. In in vitro studies, LES relaxation and esophageal peristaltic contractions were induced by the activation of nonadrenergic noncholinergic (NANC) neurons by electrical field stimulation (EFS). Hb caused significant impairment in swallowing- and EFS-induced LES relaxation and a significant increase in the speed of esophageal peristalsis. In some experiments, swallowing caused simultaneous contractions in the esophagus following Hb administration. Although Hb completely blocked LES relaxation by NO and significantly attenuated that by NANC nerve stimulation, it had no significant effect on isoproterenol-induced LES relaxations. The data support the role of NO in LES relaxation and esophageal peristalsis. This esophageal model may be important in understanding the influence of NO inhibitors and scavengers in gastrointestinal motility.


1998 ◽  
Vol 274 (2) ◽  
pp. L220-L225 ◽  
Author(s):  
I. McGrogan ◽  
L. J. Janssen ◽  
J. Wattie ◽  
P. M. O’Byrne ◽  
E. E. Daniel

To investigate the role of prostaglandin (PG) E2 in allergen-induced hyperresponsiveness, dogs inhaled either the allergen Ascaris suum or vehicle (Sham). Twenty-four hours after inhalation, some animals exposed to allergen demonstrated an increased responsiveness to acetylcholine challenge in vivo (Hyp-Resp), whereas others did not (Non-Resp). Strips of tracheal smooth muscle, either epithelium intact or epithelium denuded, were suspended on stimulating electrodes, and a concentration-response curve to carbachol (10−9 to 10−5 M) was generated. Tissues received electrical field stimulation, and organ bath fluid was collected to determine PGE2content. With the epithelium present, all three groups contracted similarly to 10−5 M carbachol, whereas epithelium-denuded tissues from animals that inhaled allergen contracted more than tissues from Sham dogs. In response to electrical field stimulation, Hyp-Resp tissues contracted less than Sham tissues in the presence of epithelium and more than Sham tissues in the absence of epithelium. PGE2release in the muscle bath was greater in Non-Resp tissues than in Sham or Hyp-Resp tissues when the epithelium was present. Removal of the epithelium greatly inhibited PGE2release. We conclude that tracheal smooth muscle is hyperresponsive in vitro after in vivo allergen exposure only when the modulatory effect of the epithelium, largely through PGE2 release, is removed.


1996 ◽  
Vol 271 (4) ◽  
pp. H1340-H1347 ◽  
Author(s):  
A. Decarie ◽  
P. Raymond ◽  
N. Gervais ◽  
R. Couture ◽  
A. Adam

Among the different enzymes responsible for the metabolism of bradykinin (BK), three peptidases look relevant in vivo: kininase I (KI), which transforms BK into its active metabolite, [des-Arg9]BK; kininase II (KII); and neutral endopeptidase, which inactivate BK and [des-Arg9]BK. The in vitro incubation of BK and [des-Arg9]BK in the serum of four species with or without enalaprilat and the quantification of the immunoreactivity of both peptides at different time intervals allowed the measurement of the kinetic parameters characterizing their metabolic pathways. Highly sensitive chemiluminescent enzyme immunoassays were used to measure the residual concentrations of BK and [des-Arg9]BK. Half-life (t1/2) of BK showed significant difference among species: rats (10 +/- 1 s) = dogs (13 +/- 1 s) < rabbits (31 +/- 1 s) < humans (49 +/- 2 s). t1/2 values of [des-Arg9]BK were also species dependent: rats (96 +/- 6 s) < < rabbits (314 +/- 6 s) = dogs (323 +/- 11 s) = humans (325 +/- 12 s). Enalaprilat significantly prevented the rapid BK and [des-Arg9]BK degradation in all species except that of [des-Arg9]BK in rat serum. Relative amount of BK hydrolyzed by serum KII was given as follows: rabbits (93.7 +/- 14.8%) = rats (83.6 +/- 6.7%) = humans (76.0 +/- 7.5%) > dogs (50.0 +/- 3.9%). Its importance in the hydrolysis of [des-Arg9]BK was 5.2 +/- 0.5% in rats < < 33.9 +/- 1.5% in humans < 52.0 +/- 1.1% in rabbits < 65.1 +/- 3.4% in dogs. The participation of serum KI in the transformation of BK into [des-Arg9]BK was dogs (67.2 +/- 5.3%) > > humans (3.4 +/- 1.2%) = rabbits (1.8 +/- 0.2%) = rats (1.4 +/- 0.3%). Finally, no significant difference on t1/2 values for BK and [des-Arg9]BK could be demonstrated between serum and plasma treated with either sodium citrate or a thrombin inhibitor. These results revealed striking species differences in the serum metabolism of kinins that could address at least partially some of the controversial data related to the cardioprotective role of kinins.


1987 ◽  
Author(s):  
Alan R Giles ◽  
Peter Vendervelden

The role of F.VII in haemostasis remains controversial, both in terms of the functional consequences of the deficiency state and the activation pathways to which it makes its principal contribution In vivo. We have developed a cuticle bleeding time (CBT) model in dogs and used this to investigate the functional consequence of both congenital and acquired F.VII deficiency (SD) (Blood 65:1197, 1985). There was no significant difference between the CBT of these animals when compared to controls. However, the CBT prolonged at a significantly lower Heparin level than that observed in controls. F.VIIa was also infused into F.VIII deficient and normal dogs and FPA measured as an indicator of thrombin generation. Significant change in FPA level occurred in the latter but not the former, suggesting that activation of F.IX rather than F.X was favoured. We have now performed detailed morphological studies of the evolving haemostatic plug (HP) in the injured cuticle of F.VII and normal animals by light (LM) and electron microscopy (EM). Quantification of the EM changes noted were performed by morphometric analysis. The tightness of the intravascular component of the HP was assessed by random measurement of intraplatelet distance. The degree of platelet activation was measured by comparing the area of the open canalicular system (OCS) in comparison to the total platelet area. The appearance of fibrin in the plug was also noted. Qualitative LM revealed little difference between the two sets of animals. The appearance of fibrin at the periphery of HP plug was delayed in SD and was reduced in quantity. However, by morphometry although the pattern was identical in both groups, there was a significant delay in the changes noted in SD. These results suggest that the extrinsic pathway may play an important role in triggering the intrinsic pathway, either by providing for activation of the cofactors V and VIII or pulse generation of F.IXa. This may play a critical role in haemostasis when the vessel injured is larger than those in the nail cuticle of the dog (50 - 150 μm) or when other components of haemostatic mechanism are compromised


1999 ◽  
Vol 202 (2) ◽  
pp. 161-170 ◽  
Author(s):  
C. Olsson ◽  
G. Aldman ◽  
A. Larsson ◽  
S. Holmgren

In this study, we describe new methods for recording gastric emptying and in vivo measurements of intragastric pressure in fish. Using these methods, we investigated the effects of the sulphated octapeptide of cholecystokinin (CCK8) on gastric emptying and on stomach motility in vivo and in vitro. Gastric emptying of 99Tcm-labelled food was measured in swimming fish by using a gamma camera, counting consecutive 2.5 min periods for 18–42 h. After 20 h, 55.3+/−4.0 % of the labelled food remained in the stomach of the control fish (mean s.e.m., N=9). Vascular infusion of CCK8 (25 pmol kg-1 h-1) delayed gastric emptying so that 70.4+/−4.8 % of the labelled food remained in the stomach after 20 h (N=8). Gastric pressure changes in vivo were measured using a balloon surgically fitted into the cardiac or pyloric part of the stomach. In the cardiac part, intra-arterial infusion of CCK8 at 0.1 nmol kg-1 h-1 resulted in a decrease in the frequency and amplitude of rhythmic contractions, while higher doses started/increased contractions. Atropine blocked much of the basal contractile activity, but did not influence the CCK8-induced inhibition of contractile activity. The pyloric part of the stomach was unaffected by intra-arterial infusion of CCK8 or atropine. In vitro perfusion of the stomach (with a balloon placed in the cardiac part to record motility) with CCK8 at high concentrations (10(−7)mol l-1 and above) augmented the spontaneous contractions, while lower concentrations had inconsistent effects. In addition, CCK8 (10(−7) to 10(−6)mol l-1) decreased the amplitude of spontaneous contractions in longitudinal strip preparations, usually in combination with an increase in the resting tension. The decrease in amplitude was not affected by the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester hydrochloride (L-NAME; 10(−4)mol l-1). Depending on the concentration and experimental arrangement, CCK8 had either inhibitory or excitatory effects on the cardiac stomach, suggesting the possible presence of different types of CCK receptor. We conclude that the predominant effect of CCK8 in vivo may be a slowing down of gastric emptying, presumably coinciding with a release of bile into the duodenum.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2197-2197
Author(s):  
Angel W. Lee ◽  
David J. States ◽  
Heather Grifka

Abstract Mononuclear phagocytes (MNPs) are critical in health to maintain tissue homeostasis and in disease as major effectors of innate immunity. In the adult, MNPs develop from bone marrow (BM) progenitors that differentiate to monocytes, tissue macrophages (Mϕs), and specialized cells (dendritic cells, microglia and osteoclasts). Colony Stimulating Factor-1 (CSF-1) acts through the CSF-1R to regulate proliferation, survival and differentiation of MNPs. GAB2, a member of the GAB family of scaffolding proteins (GAB1-3), modulates and amplifies signals from numerous receptors, through recruitment of phosphatidylinositol 3-kinase (PI3K) and Shp2 phosphatase. Knockdown studies in the 32D myeloid cell line from our lab showed that GAB2 is required for CSF-1 induced mitogenesis and activation of Akt, a PI3K effector. To test the hypothesis that the GAB2-PI3K axis is important for MNP development in vivo, we examined Mϕ development in GAB2 +/+ and −/− mice (gift of Josef Penninger). GAB2 is upregulated 14-fold during CSF-1-induced differentiation of primary BM cells from GAB2+/+ mice. A significant difference is detected in the steady state percentage of F4/80+ BM cells (F4/80 is a mature Mϕ marker): 17.5 ± 1.6 (GAB2+/+, n=8) vs. 11.4 ± 1.6 (GAB2–/−, n=6) (p=0.025, 2-sided t-test). Using the CFU-C progenitor assay with CSF-1 as the only growth factor, primary BM cells from GAB2 −/− mice show a striking 7-fold reduction in colony numbers compared to those from GAB2 +/+ mice (p=0.004) and the colonies were much smaller. Thus GAB2 is essential for optimal CSF-1-dependent Mϕ colony formation. We then used CD31 and Ly6C and flow cytometry to follow the kinetics of Mϕ formation during BM differentiation. These markers monitor sequential stages of Mϕ development: CD31highLy6C– -&gt; CD31+Ly6C+ -&gt; CD31-Ly6Chigh (Eur. J. Immunol.24:2279). As early as 2 days after differentiation induction, GAB2−/− BM cells show a 2-fold reduction in the CD31+Ly6C+ subset (p=6×10−6) and a 6-fold increase in the CD31-Ly6Chigh subset (p=1×10−4), indicating that in the absence of GAB2, CSF-1 promotes a smaller increase in myeloid progenitors and an earlier appearance of more mature cells. To assess proliferation in the progenitor population, day 2 BM cells were labeled with CFSE. Consistent with decreased cell division during early stages of Mϕ development in the absence of GAB2, we observed a 66% reduction in CFSE intensity in GAB2+/+ compared to −/− cells after 3 days in culture. A 2-fold reduction in proliferation by the MTS assay is similarly observed during late Mϕ development (days 5-7) (p=10−4). No difference in viability or expression of CSF-1R or CD11b is found in day 7 Mϕs from GAB2+/+ and −/− mice, excluding increased cell death or arrested differentiation as causes. To investigate the role of GAB2-PI3K, we transduced BM cells with viruses expressing WT-GAB2, 3YF-GAB2 (defective in PI3K binding), both in MSCV-IRES-GFP, or empty MSCV. WT- and 3YF-GAB2 expression in GAB2−/− cells increase the numbers of CFU-Cs by 5- and 2-fold respectively and by 8- and 2.4-fold in GFP+ colonies ≥ 500 μ. Conversely, 3YF-GAB2 exerts a dominant-negative effect on GAB2+/+ cells (a decrease of 30% and 76% in unsorted cells and GFP+ colonies ≥ 500 μ respectively). Therefore PI3K recruitment by GAB2 is required for CSF-1-induced Mϕ colony formation but other GAB2 effector pathways are also important. Our findings support the conclusion that GAB2 is crucial for CSF-1 mediated Mϕ development in the BM, by regulating monocyte/Mϕ progenitor expansion and Mϕ proliferation, in part through PI3K.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3767-3767
Author(s):  
Deniz Gezer ◽  
Amelie V Guitart ◽  
Milica Vukovic ◽  
Chithra Subramani ◽  
Karen Dunn ◽  
...  

Abstract Haematopoietic stem cells (HSCs) reside in hypoxic niches in the bone marrow (BM) and sustain long-life haematopoiesis. HSCs are largely quiescent, self-renew, undergo apoptosis and generate progenitor cells, which differentiate to multiple blood lineages. The strict regulation of the balance between these fate decisions is essential for haematopoiesis and their dysregulation in HSCs and progenitor cells can result in leukaemic transformation. HSCs and leukemic stem cells (LSCs) are suggested to share the same niche and are in need to adapt to hypoxic conditions. Hypoxia-inducible-factor-1α (HIF-1α) is a key mediator of cellular responses to hypoxia and is important for the maintenance of HSC functions under stressful conditions. Furthermore, in chronic myeloid leukaemia (CML) and acute myeloid leukaemia (AML) HIF-1α is essential for LSC maintenance and ablation or knockdown of HIF-1α leads to exhaustion of established LSCs. The aim of this study was to investigate the requirement for HIF-1α in the generation of pre-LSCs and the establishment of LSCs. To investigate the role of HIF-1α in the generation of pre-LSCs we retrovirally transduced haematopoietic stem and progenitor cells (HSPCs) from either WT or HIF1-αfl/fl Vav-iCre with MLL-ENL retroviruses. Next we performed serial re-plating assays under normoxic and hypoxic conditions to generate pre-LSCs. Surprisingly, WT and HIF-1α deficient HSPCs generated comparable numbers of colonies in normoxia and hypoxia (Fig. 1a). In addition no significant difference was found in the immunophenotypic profile of colonies (Figure 1b). Furthermore, microscopic examination indicated that colonies of all genotypes were dense consistent with their transformed shape (Fig. 1c). WT and HIF-1α-deficient pre-LSCs cultured under normoxia and hypoxia had similar cloning efficiency, which is known to directly correlate with the numbers of LSCs in vivo (Fig. 2). These results indicate that HIF-1α is dispensable for the generation of pre-LSCs. To test the role of HIF-1α in establishment of LSCs from pre-LSCs we transplanted pre-LSCs into lethally irradiated mice together with support BM and monitored the mice for disease development. No significant difference was found in disease latency (Fig. 3a) or frequency of LSCs in peripheral blood, bone marrow or spleens (Fig. 3b) indicating that pre-LSCs lacking HIF-1α can efficiently generate LSCs that cause aggressive AML. In conclusion, we provide genetic evidence that HIF-1α is dispensable for the generation of pre-LSCs and the establishment of LSCs from pre-LSCs. These surprising findings, together with published results indicating that HIF-1α is essential for maintenance of LSCs, imply that HIF-1α has different roles at different stages of leukaemic transformation. Further studies are required to explain the distinct roles of HIF-1α in different stages of leukaemogenesis. Disclosures: Ratcliffe: RedOx: Founder Other. Holyoake:Novartis: Membership on an entity’s Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity’s Board of Directors or advisory committees; Ariad: Membership on an entity’s Board of Directors or advisory committees.


1985 ◽  
Vol 228 (1) ◽  
pp. 179-185 ◽  
Author(s):  
V R Preedy ◽  
D M Smith ◽  
P H Sugden

Rates of protein synthesis were measured in vivo in several tissues (heart, skeletal muscles, liver, tibia, skin, brain, kidney, lung) of fed rats exposed to O2/N2 (1:9) for 6 h starting at 08:00-11:00 h. Protein synthesis rates were depressed by 15-35% compared with normoxic controls in all of the tissues studied. The decreases were greatest in the brain and the skin. Although hypoxia inhibited gastric emptying, its effects on protein synthesis could probably not be attributed to its induction of a starved state, because protein-synthesis rates in brain and skin were not decreased by a 15-18 h period of starvation initiated at 23:00 h. Furthermore, we showed that protein synthesis was inhibited by hypoxia in the rat heart perfused in vitro, suggesting a direct effect. The role of hypoxia in perturbing tissue nitrogen balance in various physiological and pathological states is discussed.


2011 ◽  
Vol 392 (7) ◽  
Author(s):  
Sandra Petrovic ◽  
Andreja Leskovac ◽  
Jelena Kotur-Stevuljevic ◽  
Jelena Joksic ◽  
Marija Guc-Scekic ◽  
...  

Abstract Fanconi anemia (FA) is a rare cancer-prone genetic disorder characterized by progressive bone marrow failure, chromosomal instability and redox abnormalities. There is much biochemical and genetic data, which strongly suggest that FA cells experience increased oxidative stress. The present study was designed to elucidate if differences in oxidant state exist between control, idiopathic bone marrow failure (idBMF) and FA cells, and to analyze oxidant state of cells in FA heterozygous carriers as well. The results of the present study confirm an in vivo prooxidant state of FA cells and clearly indicate that FA patients can be distinguished from idBMF patients based on the oxidant state of cells. Female carriers of FA mutation also exhibited hallmarks of an in vivo prooxidant state behaving in a similar manner as FA patients. On the other hand, the oxidant state of cells in FA male carriers and idBMF families failed to show any significant difference vs. controls. We demonstrate that the altered oxidant state influences susceptibility of cells to apoptosis in both FA patients and female carriers. The results highlight the need for further research of the possible role of mitochondrial inheritance in the pathogenesis of FA.


Sign in / Sign up

Export Citation Format

Share Document