scholarly journals Acute exposure to progesterone attenuates cardiac contraction by modifying myofilament calcium sensitivity in the female mouse heart

2017 ◽  
Vol 312 (1) ◽  
pp. H46-H59 ◽  
Author(s):  
Hirad A. Feridooni ◽  
Jennifer K. MacDonald ◽  
Anjali Ghimire ◽  
W. Glen Pyle ◽  
Susan E. Howlett

Acute application of progesterone attenuates cardiac contraction, although the underlying mechanisms are unclear. We investigated whether progesterone modified contraction in isolated ventricular myocytes and identified the Ca2+ handling mechanisms involved in female C57BL/6 mice (6–9 mo; sodium pentobarbital anesthesia). Cells were field-stimulated (4 Hz; 37°C) and exposed to progesterone (0.001–10.0 μM) or vehicle (35 min). Ca2+ transients (fura-2) and cell shortening were recorded simultaneously. Maximal concentrations of progesterone inhibited peak contraction by 71.4% (IC50 = 160 ± 50 nM; n = 12) and slowed relaxation by 75.4%. By contrast, progesterone had no effect on amplitudes or time courses of underlying Ca2+ transients. Progesterone (1 µM) also abbreviated action potential duration. When the duration of depolarization was controlled by voltage-clamp, progesterone attenuated contraction and slowed relaxation but did not affect Ca2+ currents, Ca2+ transients, sarcoplasmic reticulum (SR) content, or fractional release of SR Ca2+. Actomyosin MgATPase activity was assayed in myofilaments from hearts perfused with progesterone (1 μM) or vehicle (35 min). While maximal responses to Ca2+ were not affected by progesterone, myofilament Ca2+ sensitivity was reduced (EC50 = 0.94 ± 0.01 µM for control, n = 7 vs. 1.13 ± 0.05 μM for progesterone, n = 6; P < 0.05) and progesterone increased phosphorylation of myosin binding protein C. The effects on contraction were inhibited by lonaprisan (progesterone receptor antagonist) and levosimendan (Ca2+ sensitizer). Unlike results in females, progesterone had no effect on contraction or myofilament Ca2+ sensitivity in age-matched male mice. These data indicate that progesterone reduces myofilament Ca2+ sensitivity in female hearts, which may exacerbate manifestations of cardiovascular disease late in pregnancy when progesterone levels are high. NEW & NOTEWORTHY We investigated myocardial effects of acute application of progesterone. In females, but not males, progesterone attenuates and slows cardiomyocyte contraction with no effect on calcium transients. Progesterone also reduces myofilament calcium sensitivity in female hearts. This may adversely affect heart function, especially when serum progesterone levels are high in pregnancy. Listen to this article’s corresponding podcast at https://ajpheart.podbean.com/e/acute-progesterone-modifies-cardiac-contraction/ .

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Stephen H Smith ◽  
Mahesh P Gupta ◽  
Sadhana Samant ◽  
Madhu Gupta ◽  
Sanjeev G Shroff

The role of phosphorylation of myofilaments in regulating cardiac muscle calcium sensitivity and force production is well established. Recently it was shown that trichostatin A (TSA), a class-I and II histone deacetylase (HDAC) inhibitor, improved cardiac contractile function in vivo . Because class-II HDACs are able to translocate to the cytoplasm from the nucleus, it is postulated that some HDACs may interact with contractile proteins and thereby regulate myofilament calcium sensitivity and/or force production. Papillary muscle strips from mouse hearts were skinned for 4 hours and then treated overnight with two structurally dissimilar HDAC inhibitors, TSA and MS275. Both HDAC inhibitors significantly increased myofilament calcium sensitivity as quantified by pCa 50 [Baseline (n=9): 5.75±0.04; TSA (n=6): 5.84±0.02; MS275 (n=7): 5.87±0.03; P <0.05 vs . Baseline], without any significant changes in maximally activated force. Similar increase in calcium sensitivity was also observed when skinned fibers were incubated overnight in a buffer containing acetyl-CoA [acetyl-CoA (n=6): 5.84±0.04; P <0.05 vs . Baseline]. These observations suggest that acetylation of myofilament proteins can regulate myofilament calcium sensitivity. Western blot analyses of skinned fibers revealed that HDAC4 and HDAC5 were specifically associated with myofilament proteins, and acetylation of several myofilament proteins was increased following TSA treatment. One of these acetylated proteins was identified as muscle LIM protein (MLP). Protein-protein interaction analyses and co-localization studies showed that MLP specifically binds to HDAC4. Functional studies with skinned fibers isolated from MLP knock out [MLP −/− ] mice (C57BL6 strain) indicated that TSA-induced increase in calcium sensitivity was completely prevented [MLP −/− -Baseline (n=6): 5.60±0.03; MLP −/− -TSA (n=6): 5.61±0.02; P <NS] compared to wild-type (WT) mice of the same strain [WT-Baseline (n=6): 5.59±0.02; WT-TSA (n=6): 5.70±0.02; P <0.05]. These data demonstrate, for the first time, that class-II HDACs bind to cardiac myofilament proteins, with MLP being one of the binding partners, and play a role in regulating myofilament contractile function.


PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e74719 ◽  
Author(s):  
Elias Fares ◽  
W. Glen Pyle ◽  
Gibanananda Ray ◽  
Robert A. Rose ◽  
Eileen M. Denovan-Wright ◽  
...  

2016 ◽  
Vol 7 ◽  
Author(s):  
Jae-Hoon Chung ◽  
Brandon J. Biesiadecki ◽  
Mark T. Ziolo ◽  
Jonathan P. Davis ◽  
Paul M. L. Janssen

2006 ◽  
Vol 290 (5) ◽  
pp. H2092-H2097 ◽  
Author(s):  
Kenneth D. Varian ◽  
Sripriya Raman ◽  
Paul M. L. Janssen

Cardiac contraction-relaxation coupling is determined by both the free intracellular calcium concentration ([Ca2+]i) and myofilament properties. We set out to develop a technique where we could assess these parameters (twitch and steady-state force [Ca2+]i) under near physiological conditions. Bis-fura-2 was iontophorically introduced into ultrathin rat trabeculae preparations to monitor the [Ca2+]i, and steady-state contractures were achieved by using a modified Krebs-Henseleit solution containing high K+. During K+ contractures, the very slow changes in [Ca2+]i and force development were in equilibrium and allowed for the construction of a steady-state, force-[Ca2+]i relationship. Twitch contractions before and after this myofilament calcium sensitivity assessment were unaltered, and this protocol could be repeated several times. For the first time, this novel protocol allows us to measure myofilament calcium sensitivity under physiological temperature. Not only do the data so obtained allow us to assess myofilament calcium sensitivity, the data also will allow us, in the same preparation under nearly identical conditions, to compare the dynamic to the steady-state, force-calcium relationship. To test whether the steady-state relationship between force and calcium in our novel protocol reproduces expected changes, we determined this relationship in the presence of isoproterenol and under acidosis and alkalosis. As expected, β-adrenergic stimulation resulted in an increase of calcium amplitude and twitch force and a desensitization of the myofilaments as indicated by a rightward shift of the obtained steady-state, force-calcium relationship. An increase in pH shifted the curve leftward, whereas a decrease in pH resulted in the expected rightward shift.


2008 ◽  
Vol 295 (5) ◽  
pp. H1905-H1916 ◽  
Author(s):  
Andrianos Kontogeorgis ◽  
Xiaodong Li ◽  
Eunice Y. Kang ◽  
Jonathan E. Feig ◽  
Marc Ponzio ◽  
...  

Gap junction redistribution and reduced expression, a phenomenon termed gap junction remodeling (GJR), is often seen in diseased hearts and may predispose toward arrhythmias. We have recently shown that short-term pacing in the mouse is associated with changes in connexin43 (Cx43) expression and localization but not with increased inducibility into sustained arrhythmias. We hypothesized that short-term pacing, if imposed on murine hearts with decreased Cx43 abundance, could serve as a model for evaluating the electrophysiological effects of GJR. We paced wild-type (normal Cx43 abundance) and heterozygous Cx43 knockout (Cx43+/−; 66% mean reduction in Cx43) mice for 6 h at 10–15% above their average sinus rate. We investigated the electrophysiological effects of pacing on the whole animal using programmed electrical stimulation and in isolated ventricular myocytes with patch-clamp studies. Cx43+/− myocytes had significantly shorter action potential durations (APD) and increased steady-state ( Iss) and inward rectifier ( IK1) potassium currents compared with those of wild-type littermate cells. In Cx43+/− hearts, pacing resulted in a significant prolongation of ventricular effective refractory period and APD and significant diminution of Iss compared with unpaced Cx43+/− hearts. However, these changes were not seen in paced wild-type mice. These data suggest that Cx43 abundance plays a critical role in regulating currents involved in myocardial repolarization and their response to pacing. Our study may aid in understanding how dyssynchronous activation of diseased, Cx43-deficient myocardial tissue can lead to electrophysiological changes, which may contribute to the worsened prognosis often associated with pacing in the failing heart.


2007 ◽  
Vol 42 (6) ◽  
pp. S46
Author(s):  
Judit Barta ◽  
Jolanda van der Velden ◽  
Nicky M. Boontje ◽  
Ruud Zaremba ◽  
Ger J.M. Stienen

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Jingyuan li ◽  
Zoltan Pierre Arany ◽  
Mansoureh Eghbali

Angiogenesis plays an important role in the pathogenesis of cardiovascular disease. Pro-angiogenic and anti-angiogenic treatments have provided new insights into the impact of angiogenesis-based approaches on coronary artery disease. We have recently reported that the hearts of late pregnant (LP) mice are more prone to ischemia/reperfusion (I/R) injury compared to non pregnant(NP) mice. Provided the significant change of angiogenesis status in pregnancy, here we explored whether stimulating the angiogenesis with VEGF is able to protect the heart against I/R injury in late pregnancy, and whether anti-antigenic treatment with soluble endoglin(sENG), an anti-angiogenic factor, aggravates cardiac I/R injury in NP. Pregnant mice at day 12 either received daily injection of VEGF (100 ug/kg daily subcutaneous injection) or PBS(LP CTRL) for 7 days, and at day 19 the LP mice hearts were subjected to 20 min ischemia followed by 40 min reperfusion in Langendorff. NP mice either received a single adenovirus sENG(2х10 8particles via tail vein injection) or vehicle(NP CTRL), and 10 days later NP mice were subjected to 20 min ischemia followed by 40 min reperfusion in Langendorff. The heart function was recorded throughout the experiments, and the infarct size was measured by TTC staining at the end of experiments. Exogenous VEGF treatment significantly improved the cardiac function of LP mice after ischemia. The rate pressure product (RPP) at the end of reperfusion was improved from 1617±287 mmHg*beats/min (n=6) in LP CTRL to 11287±1783 mmHg*beats/min (n=3) in the VEGF group(p<0.01). The infarct size was also significantly reduced by VEGF treatment to 25.0±4.3% (n=3) from 57.4±5.2%(n=6) in CTRL (p<0.01). While sENG aggravated the cardiac I/R injury in NP, as the RPP at the end of reperfusion in the sENG group (4523±1281 mmHg*beats/min, n=4) was significantly lower compared with NP CTRL group(12818±1213 mmHg*beats/min, n=6)(p<0.01). Furthermore, the infarct size in the sENG group was markedly higher compared with NP CTRL group (34.0±3.3% (n=4) vs. 16.3±1.4%(n=6) in NP CTRL, p<0.05). In conclusion, anti-angiogenic treatment aggravates the cardiac I/R injury in NP, while angiogenic therapy protects the heart against I/R injury in LP.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009786
Author(s):  
Haili Bao ◽  
Yang Sun ◽  
Ningjie Yang ◽  
Na Deng ◽  
Zhangli Ni ◽  
...  

The maternal recognition of pregnancy is a necessary prerequisite for gestation maintenance through prolonging the corpus luteum lifespan and ensuring progesterone production. In addition to pituitary prolactin and placental lactogens, decidual derived prolactin family members have been presumed to possess luteotropic effect. However, there was a lack of convincing evidence to support this hypothesis. Here, we unveiled an essential role of uterine Notch2 in pregnancy recognition and corpus luteum maintenance. Uterine-specific deletion of Notch2 did not affect female fertility. Nevertheless, the expression of decidual Prl8a2, a member of the prolactin family, was downregulated due to Notch2 ablation. Subsequently, we interrupted pituitary prolactin function to determine the luteotropic role of the decidua by employing the lipopolysaccharide-induced prolactin resistance model, or blocking the prolactin signaling by prolactin receptor-Fc fusion protein, or repressing pituitary prolactin release by dopamine receptor agonist bromocriptine, and found that Notch2-deficient females were more sensitive to these stresses and ended up in pregnancy loss resulting from abnormal corpus luteum function and insufficient serum progesterone level. Overexpression of Prl8a2 in Notch2 knockout mice rescued lipopolysaccharide-induced abortion, highlighting its luteotropic function. Further investigation adopting Rbpj knockout and DNMAML overexpression mouse models along with chromatin immunoprecipitation assay and luciferase analysis confirmed that Prl8a2 was regulated by the canonical Notch signaling. Collectively, our findings demonstrated that decidual prolactin members, under the control of uterine Notch signaling, assisted pituitary prolactin to sustain corpus luteum function and serum progesterone level during post-implantation phase, which was conducive to pregnancy recognition and maintenance.


1989 ◽  
Vol 264 (2) ◽  
pp. 409-418 ◽  
Author(s):  
R C Poole ◽  
A P Halestrap ◽  
S J Price ◽  
A J Levi

1. Time courses for the uptake of L-lactate, D-lactate and pyruvate into isolated cardiac ventricular myocytes from guinea pig were determined at 11 degrees C or 0 degrees C (for pyruvate) in a citrate-based buffer by using a silicone-oil-filtration technique. These conditions enabled initial rates of transport to be measured without interference from metabolism of the substrates. 2. At a concentration of 0.5 mM, transport of all these substrates was inhibited by approx. 90% by 5 mM-alpha-cyano-4-hydroxycinnamate; at 10 mM-L-lactate a considerable portion of transport could not be inhibited. 3. Initial rates of L-lactate and pyruvate uptake in the presence of 5 mM-alpha-cyano-4-hydroxycinnamate were linearly related to the concentration of the monocarboxylate and probably represented diffusion of the free acid. The inhibitor-sensitive component of uptake obeyed Michaelis-Menten kinetics, with Km values for L-lactate and pyruvate of 2.3 and 0.066 mM respectively. 4. Pyruvate and D-lactate inhibited the transport of L-lactate, with Ki values (competitive) of 0.077 and 6.6 mM respectively; the Ki for pyruvate was very similar to its Km for transport. The Ki for alpha-cyano-4-hydroxycinnamate as a non-competitive inhibitor was 0.042 mM. 5. These results indicate that L-lactate, D-lactate and pyruvate share a common carrier in guinea-pig cardiac myocytes; the low stereoselectivity for L-lactate over D-lactate and the high affinity for pyruvate distinguish it from the carrier in erythrocytes and hepatocytes. The metabolic roles for this novel carrier in heart are discussed.


Sign in / Sign up

Export Citation Format

Share Document