scholarly journals The endothelial glycocalyx promotes homogenous blood flow distribution within the microvasculature

2016 ◽  
Vol 311 (1) ◽  
pp. H168-H176 ◽  
Author(s):  
P. Mason McClatchey ◽  
Michal Schafer ◽  
Kendall S. Hunter ◽  
Jane E. B. Reusch

Many common diseases involve impaired tissue perfusion, and heterogeneous distribution of blood flow in the microvasculature contributes to this pathology. The physiological mechanisms regulating homogeneity/heterogeneity of microvascular perfusion are presently unknown. Using established empirical formulations for blood viscosity modeling in vivo (blood vessels) and in vitro (glass tubes), we showed that the in vivo formulation predicts more homogenous perfusion of microvascular networks at the arteriolar and capillary levels. Next, we showed that the more homogeneous blood flow under simulated in vivo conditions can be explained by changes in red blood cell interactions with the vessel wall. Finally, we demonstrated that the presence of a space-filling, semipermeable layer (such as the endothelial glycocalyx) at the vessel wall can account for the changes of red blood cell interactions with the vessel wall that promote homogenous microvascular perfusion. Collectively, our results indicate that the mechanical properties of the endothelial glycocalyx promote homogeneous microvascular perfusion. Preservation or restoration of normal glycocalyx properties may be a viable strategy for improving tissue perfusion in a variety of diseases.

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
P Mason McClatchey

Introduction: Impaired tissue oxygenation is observed in many disease states including congestive heart failure, diabetes, cancer and aging. Decreased tissue perfusion and heterogeneous distribution of blood flow in the microvasculature contributes to this pathology. The physiological mechanisms regulating homogeneity/heterogeneity of microvascular perfusion are presently unknown. We hypothesized that microfluidic properties of the glycocalyx would promote perfusion homogeneity. Methods: To test our hypothesis, we used established empirical formulations for modelling blood viscosity in vivo (blood vessels) and in vitro (glass tubes). We first assess distribution of blood flow in idealized arteriolar networks. We next simulated distribution of blood flow at an idealized capillary bifurcation. Finally, we simulated velocity profiles and pressure gradients within the vessel lumen with varying glycocalyx properties using a computational fluid dynamics approach. Results: We found that transit time heterogeneity (as assessed by STD to mean ratio) was increased approximately 9x (6.9x-10.6x) using in vitro formulations of blood viscosity relative to in vivo formulations. This effect was mathematically accounted for by increased effective blood viscosity in smaller arterioles. We also found that distribution of blood flow at an idealized microvascular bifurcation was more symmetric using the in vivo formulation than the in vitro formulation (approximately 2x greater disparity between flow in downstream vessels). This effect was mathematically accounted for by an increased hematocrit dependence of blood viscosity. Both the diameter- and hematocrit-based changes in blood viscosity were entirely predictable from fluid dynamics simulations incorporating a space-filling, semi-permeable glycocalyx layer. Summary: Our simulations indicate that the mechanical properties of the endothelial glycocalyx promote homogeneous microvascular perfusion. Conclusions: The literature provides evidence of both glycocalyx degradation and impaired tissue perfusion in the same disease states. Preservation or restoration of normal glycocalyx properties may be a viable strategy for improving tissue perfusion in a wide variety of diseases.


1997 ◽  
Vol 272 (5) ◽  
pp. H2107-H2114 ◽  
Author(s):  
D. C. Poole ◽  
T. I. Musch ◽  
C. A. Kindig

As muscles are stretched, blood flow and oxygen delivery are compromised, and consequently muscle function is impaired. We tested the hypothesis that the structural microvascular sequellae associated with muscle extension in vivo would impair capillary red blood cell hemodynamics. We developed an intravital spinotrapezius preparation that facilitated direct on-line measurement and alteration of sarcomere length simultaneously with determination of capillary geometry and red blood cell flow dynamics. The range of spinotrapezius sarcomere lengths achievable in vivo was 2.17 +/- 0.05 to 3.13 +/- 0.11 microns. Capillary tortuosity decreased systematically with increases of sarcomere length up to 2.6 microns, at which point most capillaries appeared to be highly oriented along the fiber longitudinal axis. Further increases in sarcomere length above this value reduced mean capillary diameter from 5.61 +/- 0.03 microns at 2.4-2.6 microns sarcomere length to 4.12 +/- 0.05 microns at 3.2-3.4 microns sarcomere length. Over the range of physiological sarcomere lengths, bulk blood flow (radioactive microspheres) decreased approximately 40% from 24.3 +/- 7.5 to 14.5 +/- 4.6 ml.100 g-1.min-1. The proportion of continuously perfused capillaries, i.e., those with continuous flow throughout the 60-s observation period, decreased from 95.9 +/- 0.6% at the shortest sarcomere lengths to 56.5 +/- 0.7% at the longest sarcomere lengths and was correlated significantly with the reduced capillary diameter (r = 0.711, P < 0.01; n = 18). We conclude that alterations in capillary geometry and luminal diameter consequent to increased muscle sarcomere length are associated with a reduction in mean capillary red blood cell velocity and a greater proportion of capillaries in which red blood cell flow is stopped or intermittent. Thus not only does muscle stretching reduce bulk blood (and oxygen) delivery, it also alters capillary red blood cell flow dynamics, which may further impair blood-tissue oxygen exchange.


2000 ◽  
Vol 278 (4) ◽  
pp. H1294-H1298 ◽  
Author(s):  
Hans H. Dietrich ◽  
Mary L. Ellsworth ◽  
Randy S. Sprague ◽  
Ralph G. Dacey

The matching of blood flow with metabolic need requires a mechanism for sensing the needs of the tissue and communicating that need to the arterioles, the ultimate controllers of tissue perfusion. Despite significant strides in our understanding of blood flow regulation, the identity of the O2 sensor has remained elusive. Recently, the red blood cell, the Hb-containing O2carrier, has been implicated as a potential O2 sensor and contributor to this vascular control by virtue of its concomitant carriage of millimolar amounts of ATP, which it is able to release when exposed to a low-O2 environment. To evaluate this possibility, we exposed perfused cerebral arterioles to low extraluminal O2 in the absence and presence of red blood cells or 6% dextran and determined both vessel diameter and ATP in the vessel effluent. Only when the vessels were perfused with red blood cells did the vessels dilate in response to low extraluminal O2. In addition, this response was accompanied by a significant increase in vessel effluent ATP. These findings support the hypothesis that the red blood cell itself serves a role in determining O2 supply to tissue.


2018 ◽  
Vol 314 (4) ◽  
pp. R611-R622 ◽  
Author(s):  
Nikhil Mistry ◽  
C. David Mazer ◽  
John G. Sled ◽  
Alan H. Lazarus ◽  
Lindsay S. Cahill ◽  
...  

Moderate anemia is associated with increased mortality and morbidity, including acute kidney injury (AKI), in surgical patients. A red blood cell (RBC)-specific antibody model was utilized to determine whether moderate subacute anemia could result in tissue hypoxia as a potential mechanism of injury. Cardiovascular and hypoxic cellular responses were measured in transgenic mice capable of expressing hypoxia-inducible factor-1α (HIF-1α)/luciferase activity in vivo. Antibody-mediated anemia was associated with mild intravascular hemolysis (6 h) and splenic RBC sequestration ( day 4), resulting in a nadir hemoglobin concentration of 89 ± 13 g/l on day 4. At this time point, renal tissue oxygen tension (PtO2) was decreased in anemic mice relative to controls (13.1 ± 4.3 vs. 20.8 ± 3.7 mmHg, P < 0.001). Renal tissue hypoxia was associated with an increase in HIF/luciferase expression in vivo ( P = 0.04) and a 20-fold relative increase in renal erythropoietin mRNA transcription ( P < 0.001) but no increase in renal blood flow ( P = 0.67). By contrast, brain PtO2 was maintained in anemic mice relative to controls (22.7 ± 5.2 vs. 23.4 ± 9.8 mmHg, P = 0.59) in part because of an increase in internal carotid artery blood flow (80%, P < 0.001) and preserved cerebrovascular reactivity. Despite these adaptive changes, an increase in brain HIF-dependent mRNA levels was observed (erythropoietin: P < 0.001; heme oxygenase-1: P = 0.01), providing evidence for subtle cerebral tissue hypoxia in anemic mice. These data demonstrate that moderate subacute anemia causes significant renal tissue hypoxia, whereas adaptive cerebrovascular responses limit the degree of cerebral tissue hypoxia. Further studies are required to assess whether hypoxia is a mechanism for acute kidney injury associated with anemia.


1995 ◽  
Vol 269 (5) ◽  
pp. G692-G698 ◽  
Author(s):  
P. J. MacPhee ◽  
E. E. Schmidt ◽  
A. C. Groom

Kupffer cell migration and leukocyte-vessel wall interactions cause temporary slowing and/or stoppage of blood flow through individual liver sinusoids. Such temporal heterogeneity of flow was quantified in anesthetized mice and rats. Video recordings of red blood cell flow in 44 networks containing 8-16 sinusoids each were analyzed for 5- to 10-min periods. Flow was graded "fast," "slow," "stopped," or "reversed" based on red blood cell velocity. The mean numbers of flow changes (between grades) per minute in zone 1 vs. zone 3 were 1.39 vs. 0.78 (mouse) and 1.25 vs. 0.09 (rat). The mean percentage of time for each flow grade differed significantly between zones 1 and 3 and between species. For example, fast flow was present in zone 1 sinusoids for 51% of the time in mice and for 74% in rats; in zone 3 the corresponding numbers were 76 and 95%. Flow stasis was present in zone 1 sinusoids for 19% of the time in mice and for 7% in rats; in zone 3 the corresponding numbers were 2 and 0%. Thus considerable intermittence of perfusion exists, and the flow conditions create very different microenvironments for hepatocytes in zone 1 vs. zone 3.


2017 ◽  
Vol 123 (4) ◽  
pp. 935-941 ◽  
Author(s):  
Colin J. Brauner ◽  
Till S. Harter

Teleosts comprise 95% of fish species, almost one-half of all vertebrate species, and represent one of the most successful adaptive radiation events among vertebrates. This is thought to be in part because of their unique oxygen (O2) transport system. In salmonids, recent in vitro and in vivo studies indicate that hemoglobin-oxygen (Hb-O2) unloading to tissues may be doubled or even tripled under some conditions without changes in perfusion. This is accomplished through the short circuiting of red blood cell (RBC) pH regulation, resulting in a large arterial-venous pH difference within the RBC and induced reduction in Hb-O2 affinity. This system has three prerequisites: 1) highly pH-sensitive hemoglobin, 2) rapid RBC pH regulation, and 3) a heterogeneous distribution of plasma-accessible CA in the cardiovascular system (presence in the tissues and absence at the gills). Although data are limited, these attributes may be general characteristics of teleosts. Although this system is not likely operational to the same degree in other vertebrates, some of these prerequisites do exist, and the generation and elimination of pH disequilibrium states at the RBC will likely enhance Hb-O2 unloading to some degree. In human disease states, there are conditions that may partly satisfy those for enhanced Hb-O2 unloading, tentatively an avenue for future work that may improve treatment efficacy.


1977 ◽  
Vol 16 (01) ◽  
pp. 26-29 ◽  
Author(s):  
D. D. Greenberg ◽  
P. Som ◽  
G. E. Meinken ◽  
D. F. Sacker ◽  
H. L. Atkins ◽  
...  

Summary 99mTc-pertechnetate distribution studies were performed in rabbits and mice following pretreatment between 5—336 hours with various routinely used stannous complexes (HSA, MAA, GHT, DTPA, PYPs) containing different amounts of Sn++ (0.17 —15.0 μ mg/kg). Beyond a concentration of 0.26 mg/kg of Sn++ an alteration in 99mTc-pertechnetate distribution was observed. The red blood cell was found to be the most prominent target. An in-vivo reduction of 99mTc-pertechnetate apparently occurred by the presence of stannous ion within the red blood cell. Preloading time period between 5—24 hours did not alter the uptake of RBC/plasma ratio. Beyond that period it decreased slowly and still persisted up to 2 weeks following pretreatment. RBC/ plasma ratio of 99mTcO4 - increased with increased Sn++ content of various commercially available pharmaceutical kits.


1981 ◽  
Vol 240 (5) ◽  
pp. H804-H810 ◽  
Author(s):  
H. D. Kleinert ◽  
H. R. Weiss

Blood flow and high-energy phosphate (HEP) content were determined simultaneously in multiple microregions of left ventricular subendocardium in 29 normal anesthetized open-chest rabbits by use of a new micromethod to determine whether a direct linear relationship existed between these parameters. Tissue samples weighed 1-2 mg. ATP and creatine phosphate (CP) content were quantitated in quick-frozen hearts by fluorometry at sites where tissue perfusion was measured by H2 clearance by use of bare-tipped platinum electrodes. A series of validation studies were conducted to ensure that 1) no significant damage to the tissue surrounding the electrode occurred during the period of experimentation and 2) no significant loss of biochemical constituents had occurred due to labile processes during freezing or storage of the tissue. Blood flow, ATP, and CP values averaged 79.1 +/- 24.1 (SD) ml.min-1.100 g-1, 4.9 +/- 1.3 mumol/g tissue, and 8.0 +/- 3.0 mumol/g tissue, respectively, and are similar to those reported in studies using larger tissue samples. Correlation between the heterogeneous distribution of tissue perfusion and HEP revealed no direct linear relationship between these parameters in the normal unstressed rabbit subendocardium.


Author(s):  
Shannon L. McArdel ◽  
Anne-Sophie Dugast ◽  
Maegan E. Hoover ◽  
Arjun Bollampalli ◽  
Enping Hong ◽  
...  

AbstractRecombinant agonists that activate co-stimulatory and cytokine receptors have shown limited clinical anticancer utility, potentially due to narrow therapeutic windows, the need for coordinated activation of co-stimulatory and cytokine pathways and the failure of agonistic antibodies to recapitulate signaling by endogenous ligands. RTX-240 is a genetically engineered red blood cell expressing 4-1BBL and IL-15/IL-15Rα fusion (IL-15TP). RTX-240 is designed to potently and simultaneously stimulate the 4-1BB and IL-15 pathways, thereby activating and expanding T cells and NK cells, while potentially offering an improved safety profile through restricted biodistribution. We assessed the ability of RTX-240 to expand and activate T cells and NK cells and evaluated the in vivo efficacy, pharmacodynamics and tolerability using murine models. Treatment of PBMCs with RTX-240 induced T cell and NK cell activation and proliferation. In vivo studies using mRBC-240, a mouse surrogate for RTX-240, revealed biodistribution predominantly to the red pulp of the spleen, leading to CD8 + T cell and NK cell expansion. mRBC-240 was efficacious in a B16-F10 melanoma model and led to increased NK cell infiltration into the lungs. mRBC-240 significantly inhibited CT26 tumor growth, in association with an increase in tumor-infiltrating proliferating and cytotoxic CD8 + T cells. mRBC-240 was tolerated and showed no evidence of hepatic injury at the highest feasible dose, compared with a 4-1BB agonistic antibody. RTX-240 promotes T cell and NK cell activity in preclinical models and shows efficacy and an improved safety profile. Based on these data, RTX-240 is now being evaluated in a clinical trial.


Sign in / Sign up

Export Citation Format

Share Document