Medium perfusion enables engineering of compact and contractile cardiac tissue

2004 ◽  
Vol 286 (2) ◽  
pp. H507-H516 ◽  
Author(s):  
Milica Radisic ◽  
Liming Yang ◽  
Jan Boublik ◽  
Richard J. Cohen ◽  
Robert Langer ◽  
...  

We hypothesized that functional constructs with physiological cell densities can be engineered in vitro by mimicking convective-diffusive oxygen transport normally present in vivo. To test this hypothesis, we designed an in vitro culture system that maintains efficient oxygen supply to the cells at all times during cell seeding and construct cultivation and characterized in detail construct metabolism, structure, and function. Neonatal rat cardiomyocytes suspended in Matrigel were cultured on collagen sponges at a high initial density (1.35 × 108 cells/cm3) for 7 days with interstitial flow of medium; constructs cultured in orbitally mixed dishes, neonatal rat ventricles, and freshly isolated cardiomyocytes served as controls. Constructs were assessed at timed intervals with respect to cell number, distribution, viability, metabolic activity, cell cycle, presence of contractile proteins (sarcomeric α-actin, troponin I, and tropomyosin), and contractile function in response to electrical stimulation [excitation threshold (ET), maximum capture rate (MCR), response to a gap junctional blocker]. Interstitial flow of culture medium through the central 5-mm-diameter × 1.5-mm-thick region resulted in a physiological density of viable and differentiated, aerobically metabolizing cells, whereas dish culture resulted in constructs with only a 100- to 200-μm-thick surface layer containing viable and differentiated but anaerobically metabolizing cells around an acellular interior. Perfusion resulted in significantly higher numbers of live cells, higher cell viability, and significantly more cells in the S phase compared with dish-grown constructs. In response to electrical stimulation, perfused constructs contracted synchronously, had lower ETs, and recovered their baseline function levels of ET and MCR after treatment with a gap junctional blocker; dish-grown constructs exhibited arrhythmic contractile patterns and failed to recover their baseline MCR levels.

2001 ◽  
Vol 280 (1) ◽  
pp. H168-H178 ◽  
Author(s):  
M. Papadaki ◽  
N. Bursac ◽  
R. Langer ◽  
J. Merok ◽  
G. Vunjak-Novakovic ◽  
...  

The primary aim of this study was to relate molecular and structural properties of in vitro reconstructed cardiac muscle with its electrophysiological function using an in vitro model system based on neonatal rat cardiac myocytes, three-dimensional polymeric scaffolds, and bioreactors. After 1 wk of cultivation, we found that engineered cardiac muscle contained a 120- to 160-μm-thick peripheral region with cardiac myocytes that were electrically connected through gap junctions and sustained macroscopically continuous impulse propagation over a distance of 5 mm. Molecular, structural, and electrophysiological properties were found to be interrelated and depended on specific model system parameters such as the tissue culture substrate, bioreactor, and culture medium. Native tissue and the best experimental group (engineered cardiac muscle cultivated using laminin-coated scaffolds, rotating bioreactors, and low-serum medium) were comparable with respect to the conduction velocity of propagated electrical impulses and spatial distribution of connexin43. Furthermore, the structural and electrophysiological properties of the engineered cardiac muscle, such as cellularity, conduction velocity, maximum signal amplitude, capture rate, and excitation threshold, were significantly improved compared with our previous studies.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Jifen Li ◽  
Sarah Carrante ◽  
Roslyn Yi ◽  
Frans van Roy ◽  
Glenn L. Radice

Introduction: Mammalian heart possesses regenerative potential immediately after birth and lost by one week of age. The mechanisms that govern neonatal cardiomyocyte proliferation and regenerative capacity are poorly understood. Recent reports indicate that Yap-Tead transcriptional complex is necessary and sufficient for cardiomyocyte proliferation. During postnatal development, N-cadherin/catenin adhesion complex becomes concentrated at termini of cardiomyocytes facilitating maturation of a specialized intercellular junction structure, the intercalated disc (ICD). This process coincides with the time cardiomyocytes exit cell cycle soon after birth. Hypothesis: We hypothesize that coincident with maturation of ICD α-catenins sequester transcriptional coactivator Yap in cytosol thus preventing activation of genes critical for cardiomyocyte proliferation. Methods: We deleted αE-catenin / αT-catenin genes (α-cat DKO) in perinatal mouse heart and knockdown (KD) α-catenins in neonatal rat cardiomyocytes to study functional impact of α-catenins ablation on ICD maturation. Results: We previously demonstrated that adult α-cat DKO mice exhibited decrease in scar size and improved function post myocardial infarction. In present study, we investigated function of α-catenins during postnatal heart development. We found increase in the number of Yap-positive nuclei (58.7% in DKO vs. 35.8 % in WT, n=13, p<0.001) and PCNA (53.9% in DKO vs. 47.8%, n=8, p<0.05) at postnatal day 1 and day 7 of α-cat DKO heart, respectively. Loss of α-catenins resulted in reduction in N-cadherin at ICD at day 14. We observed an increase number of mononucleated myocytes and decrease number of binucleated myocytes in α-cat DKO compared to controls. Using siRNA KD, we were able to replicate α-cat DKO proliferative phenotype in vitro. The number of BrdU-positive cells was decreased in α-cat KD after interfering with Yap expression (2.91% in α-cat KD vs. 2.02% in α-cat/Yap KD, n>2500 cells, p<0.05), suggesting α-catenins regulate cell proliferation through Yap in neonatal cardiomyocytes. Conclusion: Our results suggest that maturation of ICD regulates α-catenin-Yap interactions in cytosol, thus preventing Yap nuclear accumulation and cardiomyocyte proliferation.


2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Zheng Wang ◽  
Lu Gao ◽  
Lili Xiao ◽  
Lingyao Kong ◽  
Huiting Shi ◽  
...  

Bakuchiol (Bak), a monoterpene phenol isolated from the seeds of Psoralea corylifolia, has been widely used to treat a large variety of diseases in both Indian and Chinese folkloric medicine. However, the effects of Bak on cardiac hypertrophy remain unclear. Therefore, the present study was designed to determine whether Bak could alleviate cardiac hypertrophy. Mice were subjected to aortic banding (AB) to induce cardiac hypertrophy model. Bak of 1 ml/100 g body weight was given by oral gavage once a day from 1 to 8 weeks after surgery. Our data demonstrated for the first time that Bak could attenuate pressure overload-induced cardiac hypertrophy and could attenuate fibrosis and the inflammatory response induced by AB. The results further revealed that the effect of Bak on cardiac hypertrophy was mediated by blocking the activation of the NF-κB signaling pathway. In vitro studies performed in neonatal rat cardiomyocytes further proved that the protective effect of Bak on cardiac hypertrophy is largely dependent on the NF-κB pathway. Based on our results, Bak shows profound potential for its application in the treatment of pathological cardiac hypertrophy, and we believe that Bak may be a promising therapeutic candidate to treat cardiac hypertrophy and heart failure.


2005 ◽  
Vol 67 (2) ◽  
pp. 216-224 ◽  
Author(s):  
N LALEVEE ◽  
M REBSAMEN ◽  
S BARRERELEMAIRE ◽  
E PERRIER ◽  
J NARGEOT ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Xu Yan ◽  
Jinwen Tian ◽  
Hongjin Wu ◽  
Yuna Liu ◽  
Jianxun Ren ◽  
...  

Aim. To investigate the effect of Ginsenoside Rb1 (GS-Rb1) on hypoxia/ischemia (H/I) injury in cardiomyocytesin vitroand the mitochondrial apoptotic pathway mediated mechanism.Methods. Neonatal rat cardiomyocytes (NRCMs) for the H/I groups were kept in DMEM without glucose and serum, and were placed into a hypoxic jar for 24 h. GS-Rb1 at concentrations from 2.5 to 40 µM was given during hypoxic period for 24 h. NRCMs injury was determined by MTT and lactate dehydrogenase (LDH) leakage assay. Cell apoptosis, ROS accumulation, and mitochondrial membrane potential (MMP) were assessed by flow cytometry. Cytosolic translocation of mitochondrial cytochrome c and Bcl-2 family proteins were determined by Western blot. Caspase-3 and caspase-9 activities were determined by the assay kit.Results. GS-Rb1 significantly reduced cell death and LDH leakage induced by H/I. It also reduced H/I induced NRCMs apoptosis induced by H/I, in accordance with a minimal reactive oxygen species (ROS) burst. Moreover, GS-Rb1 markedly decreased the translocation of cytochrome c from the mitochondria to the cytosol, increased the Bcl-2/ Bax ratio, and preserved mitochondrial transmembrane potential (ΔΨm). Its administration also inhibited activities of caspase-9 and caspase-3.Conclusion. Administration of GS-Rb1 during H/Iin vitrois involved in cardioprotection by inhibiting apoptosis, which may be due to inhibition of the mitochondrial apoptotic pathway.


1994 ◽  
Vol 266 (3) ◽  
pp. R658-R667 ◽  
Author(s):  
K. Sugaya ◽  
W. C. De Groat

An in vitro neonatal (1-7 day) rat brain stem-spinal cord-bladder (BSB) preparation was used to examine the central control of micturition. Isovolumetric bladder contractions occurred spontaneously or were induced by electrical stimulation of the ventrolateral brain stem, spinal cord, bladder wall (ES-BW), or by perineal tactile stimulation (PS). Transection of the spinal cord at the L1 segment increased the amplitude of ES-BW- and PS-evoked contractions, and subsequent removal of the spinal cord further increased spontaneous and ES-BW-evoked contractions but abolished PS-evoked contractions. Hexamethonium (1 mM), a ganglionic blocking agent, mimicked the effect of cord extirpation. Tetrodotoxin (1 microM) blocked ES-BW- and PS-evoked contractions but enhanced spontaneous contractions. Bicuculline methiodide (10-50 microM), a gamma-aminobutyric acid A receptor antagonist, increased the amplitude of spontaneous, ES-BW- and PS-evoked contractions. These results indicate that PS-evoked contractions are mediated by spinal reflex pathways, whereas spontaneous and ES-BW-evoked contractions that are elicited by peripheral mechanisms are subject to a tonic inhibition dependent on an efferent outflow from the spinal cord. PS-evoked micturition is also subject to inhibitory modulation arising from sites rostral to the lumbosacral spinal cord. Although electrical stimulation of bulbospinal excitatory pathways can initiate bladder contractions in the neonatal rat, these pathways do not appear to have an important role in controlling micturition during the first postnatal week.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1309
Author(s):  
Sandra Funcke ◽  
Tessa R. Werner ◽  
Marc Hein ◽  
Bärbel M. Ulmer ◽  
Arne Hansen ◽  
...  

Intermittent hypoxia and various pharmacological compounds protect the heart from ischemia reperfusion injury in experimental approaches, but the translation into clinical trials has largely failed. One reason may lie in species differences and the lack of suitable human in vitro models to test for ischemia/reperfusion. We aimed to develop a novel hypoxia-reoxygenation model based on three-dimensional, spontaneously beating and work performing engineered heart tissue (EHT) from rat and human cardiomyocytes. Contractile force, the most important cardiac performance parameter, served as an integrated outcome measure. EHTs from neonatal rat cardiomyocytes were subjected to 90 min of hypoxia which led to cardiomyocyte apoptosis as revealed by caspase 3-staining, increased troponin I release (time control vs. 24 h after hypoxia: cTnI 2.7 vs. 6.3 ng/mL, ** p = 0.002) and decreased contractile force (64 ± 6% of baseline) in the long-term follow-up. The detrimental effects were attenuated by preceding the long-term hypoxia with three cycles of 10 min hypoxia (i.e., hypoxic preconditioning). Similarly, [d-Ala2, d-Leu5]-enkephalin (DADLE) reduced the effect of hypoxia on force (recovery to 78 ± 5% of baseline with DADLE preconditioning vs. 57 ± 5% without, p = 0.012), apoptosis and cardiomyocyte stress. Human EHTs presented a comparable hypoxia-induced reduction in force (55 ± 5% of baseline), but DADLE failed to precondition them, likely due to the absence of δ-opioid receptors. In summary, this hypoxia-reoxygenation in vitro model displays cellular damage and the decline of contractile function after hypoxia allows the investigation of preconditioning strategies and will therefore help us to understand the discrepancy between successful conditioning in vitro experiments and its failure in clinical trials.


Sign in / Sign up

Export Citation Format

Share Document