scholarly journals Acute and chronic angiotensin-(1–7) restores vasodilation and reduces oxidative stress in mesenteric arteries of salt-fed rats

2011 ◽  
Vol 301 (4) ◽  
pp. H1341-H1352 ◽  
Author(s):  
Gábor Raffai ◽  
Matthew J. Durand ◽  
Julian H. Lombard

This study determined the effect of ANG-(1–7) on salt-induced suppression of endothelium-dependent vasodilatation in the mesenteric arteries of male Sprague-Dawley rats. Chronic intravenous infusion of ANG-(1–7), oral administration of the nonpeptide mas receptor agonist AVE-0991, and acute preincubation of the arteries with ANG-(1–7) and AVE-0991 all restored vasodilator responses to both ACh and histamine that were absent in the arteries of rats fed a high-salt (4% NaCl) diet. The protective effects of ANG-(1–7) and AVE-0991 were inhibited by acute or chronic administration of the mas receptor antagonist A-779, the ANG II type 2 (AT2) receptor blocker PD-123319, or N-nitro-l-arginine methyl ester, but not the ANG II type 1 receptor antagonist losartan. Preincubation with the antioxidant tempol or the nitric oxide (NO) donor diethylenetriamine NONOate and acute and chronic administration of the AT2 receptor agonist CGP-42112 mimicked the protective effect of ANG-(1–7) to restore vascular relaxation. Acute preincubation with ANG-(1–7) and chronic infusion of ANG-(1–7) ameliorated the elevated superoxide levels in rats fed a high-salt diet, but the expression of Cu/Zn SOD and Mn SOD enzyme proteins in the vessel wall was unaffected by ANG-(1–7) infusion. These results indicate that both acute and chronic systemic administration of ANG-(1–7) or AVE-0991 restore endothelium-dependent vascular relaxation in salt-fed Sprague-Dawley rats by reducing vascular oxidant stress and enhancing NO availability via mas and AT2 receptors. These findings suggest a therapeutic potential for mas/AT2 receptor activation in preventing the vascular oxidant stress and endothelial dysfunction associated with elevated dietary salt intake.

2010 ◽  
Vol 299 (4) ◽  
pp. H1024-H1033 ◽  
Author(s):  
Matthew J. Durand ◽  
Gábor Raffai ◽  
Brian D. Weinberg ◽  
Julian H. Lombard

The goals of this study were to 1) determine the acute effect of ANG-(1-7) on vascular tone in isolated middle cerebral arteries (MCAs) from Sprague-Dawley rats fed a normal salt (NS; 0.4% NaCl) diet, 2) evaluate the ability of chronic intravenous infusion of ANG-(1-7) (4 ng·kg−1·min−1) for 3 days to restore endothelium-dependent dilation to acetylcholine (ACh) in rats fed a high-salt (HS; 4% NaCl) diet, and 3) determine whether the amelioration of endothelial dysfunction by ANG-(1-7) infusion in rats fed a HS diet is different from the protective effect of low-dose ANG II infusion in salt-fed rats. MCAs from rats fed a NS diet dilated in response to exogenous ANG-(1-7) (10−10–10−5 M). Chronic ANG-(1-7) infusion significantly reduced vascular superoxide levels and restored the nitric oxide-dependent dilation to ACh (10−10–10−5 M) that was lost in MCAs of rats fed a HS diet. Acute vasodilation to ANG-(1-7) and the restoration of ACh-induced dilation by chronic ANG-(1-7) infusion in rats fed a HS diet were blocked by the Mas receptor antagonist [d-ALA( 7 )]-ANG-(1-7) or the ANG II type 2 receptor antagonist PD-123319 and unaffected by ANG II type 1 receptor blockade with losartan. The restoration of ACh-induced dilation in MCAs of HS-fed rats by chronic intravenous infusion of ANG II (5 ng·kg−1·min−1) was blocked by losartan and unaffected by d-ALA. These findings demonstrate that circulating ANG-(1-7), working via the Mas receptor, restores endothelium-dependent vasodilation in cerebral resistance arteries of animals fed a HS diet via mechanisms distinct from those activated by low-dose ANG II infusion.


2015 ◽  
Vol 308 (7) ◽  
pp. F706-F712 ◽  
Author(s):  
Margaret A. Zimmerman ◽  
Babak Baban ◽  
Ashlee J. Tipton ◽  
Paul M. O'Connor ◽  
Jennifer C. Sullivan

Recent studies suggest that sex of the animal and T cell impact ANG II hypertension in Rag−/− mice, with females being protected relative to males. This study tested the hypothesis that ANG II results in greater increases in proinflammatory T cells and cytokines in males than in females. Male and female Sprague-Dawley (SD) rats, aged 12 wk, were treated with vehicle or ANG II (200 ng·kg−1·min−1) for 2 wk. Renal CD4+ T cells and Tregs were comparable between vehicle-treated males and females, although males expressed more Th17 and IL-17+ T cells and fewer IL-10+ T cells than females. ANG II resulted in greater increases in CD4+ T cells, Th17 cells, and IL-17+ cells in males; Tregs increased only in females. We previously showed that ANG (1–7) antagonizes ANG II-induced increases in blood pressure in females and ANG (1–7) has been suggested to be anti-inflammatory. Renal ANG (1–7) levels were greater in female SD at baseline and following ANG II infusion. Additional rats were treated with ANG II plus the ANG (1–7)-mas receptor antagonist A-779 (48 μg·kg−1·h−1) to test the hypothesis that greater ANG (1–7) in females results in more Tregs relative to males. Inhibition of ANG (1–7) did not alter renal T cells in either sex. In conclusion, ANG II induces a sex-specific effect on the renal T cell profile. Males have greater increases in proinflammatory T cells, and females have greater increases in anti-inflammatory Tregs; however, sex differences in the renal T cell profile are not mediated by ANG (1–7).


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 685-685
Author(s):  
Clara M Ortiz-Ruiz ◽  
Elizabeth Sanabria ◽  
Melissa C Manriquez ◽  
Rodney J Bolterman ◽  
Luis A Juncos ◽  
...  

44 Chronic infusion of subpressor doses of Ang II causes blood pressure to increase progressively over several days. The mechanisms underlying this response are unknown but may involve Ang II-induced generation of additional vasoconstrictor processes. In this study, we tested whether endothelin and/or oxidative stress are implicated in the slow pressor responses to Ang II. We infused either vehicle (group 1; n=6) or Ang II (group 2; n=5) intravenously at 5 ng/kg/min via osmotic pumps for 15 days into Sprague Dawley rats. In addition to the Ang II infusion, groups 3 and 4 (n=6 each) received 30 mg/kg/day of either losartan (an angiotensin AT 1 receptor blocker) or bosentan (a blocker of both endothelin receptors, ET A and ET B ) in their drinking water. We measured systolic blood pressure (SBP) during the infusion, and the levels of circulating Ang II and isoprostanes (a marker of oxidative stress) at the conclusion of the experiments. Rats infused with vehicle had no change in SBP (from 138±13 to 138±2 mmHg) and normal levels of Ang II (34.5±9 pg/ml) and isoprostanes (111±10 pg/ml). Ang II infusion increased SBP from 133±10 to 158±8 mmHg, as well as circulating levels of Ang II (144±65 pg/ml) and isoprostanes (156±19 pg/ml). Losartan treatment abolished Ang II induced increases in SBP (SBP went from 137±5 to 120±4 mmHg), and isoprostanes (115±15 pg/ml), without altering Ang II levels (101±30 pg/ml). Bosentan also blocked Ang II-induced increases in SBP (from 135±4 to 139±3) but did not alter the increased isoprostane levels (146±14 pg/ml). Surprisingly, bosentan blunted the increase in Ang II levels (51±10 pg/ml). In conclusion, low dose Ang II-induced increases in SBP and oxidant stress depend on the AT 1 receptor. Endothelin receptor blockade also reduces SBP, but it does so independently of reducing oxidative stress (as measured by isoprostanes).


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Feng Zhang ◽  
Yu Xu ◽  
Yan Pan ◽  
Shuo Sun ◽  
Aidong Chen ◽  
...  

Endothelial dysfunction of small arteries occurs in patients with hypertension and in various hypertensive models. Endothelial function is usually evaluated by the degree of acetylcholine- (ACh-) induced vascular relaxation. Our previous study has found that compared to Wistar-Kyoto rats (WKY), ACh-induced vasodilatation was attenuated significantly in the mesenteric artery (MA), coronary artery (CA), and pulmonary artery (PA) of spontaneously hypertensive rats (SHR). This study investigated the influence of angiotensin- (Ang-) (1-7) and Ang II on blood pressure and ACh-induced vascular relaxation, as well as their interactive roles and downstream signal pathways in SHR and WKY. Intravenous injection of Ang II significantly increased, while Ang-(1-7) decreased the mean arterial pressure (MAP) in SHR. Ang-(1-7) improved ACh-induced relaxation in the MA, CA, and PA of SHR, while Ang II further attenuated it, which were inhibited by pretreatment with Mas receptor antagonist A-779 or AT1 receptor antagonist losartan, respectively. Ang-(1-7) decreased the basal arterial tension, and Ang II induced great vasoconstriction in SHR. Pretreatment with Ang-(1-7) inhibited the Ang II-induced pressor response, vasoconstriction, and the effects on ACh-induced relaxation in SHR. AT1 receptor expression was higher, while nitric oxide (NO), cGMP, and protein kinase G (PKG) levels of arteries were lower in SHR than in WKY. Ang II decreased, while Ang-(1-7) increased, the levels of NO, cGMP, and PKG of arteries. In addition, pretreatment with Ang-(1-7) inhibited the Ang II-induced reduction of NO, cGMP, and PKG in SHR. These results indicate that the activation of the Mas receptor by Ang-(1-7) can improve endothelial function and decrease MAP in SHR and inhibit the deteriorative effect of Ang II on endothelial function through the NO-cGMP-PKG pathway.


2015 ◽  
Vol 308 (3) ◽  
pp. F252-F260 ◽  
Author(s):  
Aaron J. Polichnowski ◽  
Karen A. Griffin ◽  
Maria M. Picken ◽  
Hector Licea-Vargas ◽  
Jianrui Long ◽  
...  

ANG II is thought to increase the susceptibility to hypertension-induced renal disease (HIRD) via blood pressure (BP)-dependent and BP-independent pathways; however, the quantitative relationships between BP and HIRD have not been examined in ANG II-infused hypertensive rats. We compared the relationship between radiotelemetrically measured BP and HIRD in Sprague-Dawley rats (Harlan) chronically administered ANG II (300–500 ng·kg−1·min−1, n = 19) for 4 wk versus another commonly employed pharmacological model of hypertension induced by the chronic administration of Nω-nitro-l-arginine methyl ester (l-NAME, 50 mg·kg−1·min−1, n = 23). Despite the significantly higher average systolic BP associated with ANG II (191.1 ± 3.2 mmHg) versus l-NAME (179.9 ± 2.5 mmHg) administration, the level of HIRD was very modest in the ANG II versus l-NAME model as evidenced by significantly less glomerular injury (6.6 ± 1.3% vs. 11.3 ± 1.5%, respectively), tubulointerstitial injury (0.3 ± 0.1 vs. 0.7 ± 0.1 injury score, respectively), proteinuria (66.3 ± 10.0 vs. 117.5 ± 10.1 mg/day, respectively), and serum creatinine levels (0.5 ± 0.04 vs. 0.9 ± 0.07 mg/dl, respectively). Given that HIRD severity is expected to be a function of renal microvascular BP transmission, BP-renal blood flow (RBF) relationships were examined in additional conscious rats administered ANG II ( n = 7) or l-NAME ( n = 8). Greater renal vasoconstriction was observed during ANG II versus l-NAME administration (41% vs. 23% decrease in RBF from baseline). Moreover, administration of ANG II, but not l-NAME, led to a unique BP-RBF pattern in which the most substantial decreases in RBF were observed during spontaneous increases in BP. We conclude that the hemodynamic effects of ANG II may mediate the strikingly low susceptibility to HIRD in the ANG II-infused model of hypertension in rats.


2001 ◽  
Vol 280 (5) ◽  
pp. R1388-R1392 ◽  
Author(s):  
Barbara T. Alexander ◽  
Kathy L. Cockrell ◽  
A. Nicole Rinewalt ◽  
Jason N. Herrington ◽  
Joey P. Granger

The purpose of this study was to determine the role of endothelin in mediating the renal hemodynamic and arterial pressure changes observed during chronic ANG II-induced hypertension. ANG II (50 ng · kg−1 · min−1) was chronically infused into the jugular vein by miniosmotic pump for 2 wk in male Sprague-Dawley rats with and without endothelin type A (ETA)-receptor antagonist ABT-627 (5 mg · kg−1 · day−1) pretreatment. Arterial pressure increased in ANG II rats compared with control rats (149 ± 5 vs. 121 ± 6 mmHg, P< 0.05, respectively). Renal expression of preproendothelin mRNA was increased by ∼50% in both the medulla and cortex of ANG II rats. The hypertensive effect of ANG II was completely abolished in rats pretreated with the ETA-receptor antagonist (114 ± 5 mmHg, P < 0.05). Glomerular filtration rate was decreased by 33% in ANG II rats, and this response was attenuated in rats pretreated with ETA-receptor antagonist. These data indicate that activation of the renal endothelin system by ANG II may play an important role in mediating chronic renal and hypertensive actions of ANG II.


2007 ◽  
Vol 292 (2) ◽  
pp. F861-F867 ◽  
Author(s):  
Melvin R. Hayden ◽  
Nazif A. Chowdhury ◽  
Shawna A. Cooper ◽  
Adam Whaley-Connell ◽  
Javad Habibi ◽  
...  

TG(mRen2)27 (Ren2) transgenic rats overexpress the mouse renin gene, with subsequent elevated tissue ANG II, hypertension, and nephropathy. The proximal tubule cell (PTC) is responsible for the reabsorption of 5–8 g of glomerular filtered albumin each day. Excess filtered albumin may contribute to PTC damage and tubulointerstitial disease. This investigation examined the role of ANG II-induced oxidative stress in PTC structural remodeling: whether such changes could be modified with in vivo treatment with ANG type 1 receptor (AT1R) blockade (valsartan) or SOD/catalase mimetic (tempol). Male Ren2 (6–7 wk old) and age-matched Sprague-Dawley rats were treated with valsartan (30 mg/kg), tempol (1 mmol/l), or placebo for 3 wk. Systolic blood pressure, albuminuria, N-acetyl-β-d-glucosaminidase, and kidney tissue malondialdehyde (MDA) were measured, and ×60,000 transmission electron microscopy images were used to assess PTC microvilli structure. There were significant differences in systolic blood pressure, albuminuria, lipid peroxidation (MDA and nitrotyrosine staining), and PTC structure in Ren2 vs. Sprague-Dawley rats (each P < 0.05). Increased mean diameter of PTC microvilli in the placebo-treated Ren2 rats ( P < 0.05) correlated strongly with albuminuria ( r2 = 0.83) and moderately with MDA ( r2 = 0.49), and there was an increase in the ratio of abnormal forms of microvilli in placebo-treated Ren2 rats compared with Sprague-Dawley control rats ( P < 0.05). AT1R blockade, but not tempol treatment, abrogated albuminuria and N-acetyl-β-d-glucosaminidase; both therapies corrected abnormalities in oxidative stress and PTC microvilli remodeling. These data indicate that PTC structural damage in the Ren2 rat is related to the oxidative stress response to ANG II and/or albuminuria.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Luciana C Veiras ◽  
Jiyang Han ◽  
Donna L Ralph ◽  
Alicia A McDonough

During Ang II hypertension distal tubule Na-Cl Cotransporter (NCC) abundance and its activating phosphorylation (NCCp), as well as Epithelial Na+ channels (ENaC) abundance and activating cleavage are increased 1.5-3 fold. Fasting plasma [K+] is significantly lower in Ang II hypertension (3.3 ± 0.1 mM) versus controls (4.0 ± 0.1 mM), likely secondary to ENaC stimulation driving K+ secretion. The aim of this study was to test the hypothesis that doubling dietary K+ intake during Ang II infusion will lower NCC and NCCp abundance to increase Na+ delivery to ENaC to drive K+ excretion and reduce blood pressure. Methods: Male Sprague Dawley rats (225-250 g; n= 7-9/group) were treated over 2 weeks: 1) Control 1% K diet fed (C1K); 2) Ang II infused (400 ng/kg/min) 1% K diet fed (A1K); or 3) Ang II infused 2% K diet fed (A2K). Blood pressure (BP) was determined by tail cuff, electrolytes by flame photometry and transporters’ abundance by immunoblot of cortical homogenates. Results: As previously reported, Ang II infusion increased systolic BP (from 132 ± 5 to 197 ± 4 mmHg), urine volume (UV, 2.4 fold), urine Na+ (UNaV, 1.3 fold), heart /body weight ratio (1.23 fold) and clearance of endogenous Li+ (CLi, measures fluid volume leaving the proximal tubule, from 0.26 ± 0.02 to 0.51 ± 0.01 ml/min/kg) all evidence for pressure natriuresis. A2K rats exhibited normal plasma [K+] (4.6 ± 0.1 mM, unfasted), doubled urine K+ (UKV, from 0.20 to 0.44 mmol/hr), and increased CLi (to 0.8 ± 0.1 ml/min/kg) but UV, UNaV, cardiac hypertrophy and BP were unchanged versus the A1K group. As expected, NCC, NCCpS71 and NCCpT53 abundance increased in the A1K group to 1.5 ± 0.1, 2.9 ± 0.5 and 2.8 ± 0.4 fold versus C1K, respectively. As predicted by our hypothesis, when dietary K+ was doubled (A2K), Ang II infusion did not activate NCC, NCCpS71 nor NCCpT53 (0.91 ± 0.04, 1.3 ± 0.1 and 1.6 ± 0.2 fold versus C1K, respectively). ENaC subunit abundance and cleavage increased 1.5 to 3 fold in both A1K and A2K groups; ROMK was unaffected by Ang II or dietary K. In conclusion, evidence is presented that stimulation of NCC during Ang II hypertension is secondary to K+ deficiency driven by ENaC stimulation since doubling dietary K+ prevents the activation. The results also indicate that elevation in BP is independent of NCC activation


2002 ◽  
Vol 283 (1) ◽  
pp. R243-R248 ◽  
Author(s):  
Jennifer M. Sasser ◽  
Jennifer S. Pollock ◽  
David M. Pollock

To determine the influence of chronic ANG II infusion on urinary, plasma, and renal tissue levels of immunoreactive endothelin (ET), ANG II (65 ng/min) or saline vehicle was delivered via osmotic minipump in male Sprague-Dawley rats given either a high-salt diet (10% NaCl) or normal-salt diet (0.8% NaCl). High-salt diet alone caused a slight but not statistically significant increase (7 ± 1%) in mean arterial pressure (MAP). MAP was significantly increased in ANG II-infused rats (41 ± 10%), and the increase in MAP was significantly greater in ANG II rats given a high-salt diet (59 ± 1%) compared with the increase observed in rats given a high-salt diet alone or ANG II infusion and normal-salt diet. After a 2-wk treatment, urinary excretion of immunoreactive ET was significantly increased by ∼50% in ANG II-infused animals and by over 250% in rats on high-salt diet, with or without ANG II infusion. ANG II infusion combined with high-salt diet significantly increased immunoreactive ET content in the cortex and outer medulla, but this effect was not observed in other groups. In contrast, high-salt diet, with or without ANG II infusion, significantly decreased immunoreactive ET content within the inner medulla. These data indicate that chronic elevations in ANG II levels and sodium intake differentially affect ET levels within the kidney and provide further support for the hypothesis that the hypertensive effects of ANG II may be due to interaction with the renal ET system.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Nancy L Kanagy ◽  
Jessica M Osmond ◽  
Olan Jackson-Weaver ◽  
Benjimen R Walker

Hydrogen sulfide (H 2 S), produced by the enzyme cystathionine-γ lyase (CSE), dilates arteries by hyperpolarizing and relaxing vascular smooth muscle cells (VSMC) and CSE knock-out causes hypertension and endothelial dysfunction showing the importance of this system. However, it is not clear if H 2 S-induced VSMC depolarization and relaxation is mediated by direct effects on VSMC or indirectly through actions on endothelial cells (EC). We reported previously that disrupting EC prevents H 2 S-induced vasodilation suggesting H 2 S might act directly on EC. Because inhibiting large-conductance Ca 2+ -activated K + (BK Ca ) channels also inhibits H 2 S-induced dilation, we hypothesized that H 2 S activates EC BK Ca channels to hyperpolarize EC and increase EC Ca 2+ which stimulates release of a secondary hyperpolarizing factor. Small mesenteric arteries from male Sprague-Dawley rats were used for all experiments. We found that EC disruption prevented H 2 S-induced VSMC membrane potential ( E m ) hyperpolarization. Blocking EC BK Ca channels with luminal application of the BK Ca inhibitor, iberiotoxin (IbTx, 100 nM), also prevented NaHS-induced dilation and VSMC hyperpolarization but did not affect resting VSMC E m showing EC specific actions. Sharp electrode recordings in arteries cut open to expose EC demonstrated H 2 S-induced hyperpolarization of EC while Ca 2+ imaging studies in fluor-4 loaded EC showed that H 2 S increases EC Ca 2+ event frequency. Thus H 2 S can act directly on EC. Inhibiting the EC enzyme cytochrome P 450 2C (Cyp2C) with sulfaphenazole also prevented VSMC depolarization and vasodilation. Finally, inhibiting TRPV4 channels to block the target of the Cyp2C product 11,12-EET inhibited NaHS-induced dilation. Combined with our previous report that CSE inhibition decreases BK Ca currents in EC, these results suggest that H 2 S stimulates EC BK Ca channels and activates Cyp2C upstream of VSMC hyperpolarization and vasodilation.


Sign in / Sign up

Export Citation Format

Share Document