Vascular insulin resistance related to endoplasmic reticulum stress in aortas from a rat model of chronic kidney disease

2012 ◽  
Vol 303 (9) ◽  
pp. H1154-H1165 ◽  
Author(s):  
Qiu Gen Zhou ◽  
Xiao Jing Fu ◽  
Guo Yu Xu ◽  
Wei Cao ◽  
Hong Fa Liu ◽  
...  

Metabolic insulin resistance has been demonstrated in patients with nondiabetic chronic kidney disease (CKD), yet their vascular insulin signaling remains poorly understood. Here we tested the hypothesis that vascular insulin signaling was impaired and related with endoplasmic reticulum (ER) stress in aortas from the reduced renal mass (RRM) model of CKD. The activity of insulin signaling and markers of ER were determined in aortas from rats with RRM and cultured human umbilical vein endothelial cells. Tyrosine phosphorylation of insulin receptor-β and insulin receptor substrate (IRS)-1 and phosphorylation of protein kinase B and endothelial nitric oxide synthase were all decreased in aorta from RRM rats, whereas serine phosphorylation of IRS-1, a marker of insulin resistance, was increased. In addition, nitric oxide generation and insulin-mediated vasorelaxation were decreased in aortas from RRM rats. Insulin signaling in cultured vascular endothelial cells was impaired by induction of ER stress and was restored in aortas of RRM rats by inhibition of ER stress. Taken together, rats with RRM had vascular insulin resistance that was linked to ER stress. This identified vascular insulin resistance and ER stress as a potential therapeutic target for cardiovascular complications in patients with CKD.

2019 ◽  
Vol 44 (5) ◽  
pp. 599-610 ◽  
Author(s):  
Benan Pelin Sermikli ◽  
Gulizar Aydogdu ◽  
Afsar Abbasi Taghidizaj ◽  
Erkan Yilmaz

Abstract Background Obesity is a global public health problem. Obesity closely associated with various metabolic diseases such as; insulin resistance, hypertension, dyslipidemia and cardiovascular diseases. Endoplasmic reticulum (ER) stress is a critical factor for insulin resistance. O-linked N-acetyl-glucosamine (O-GlcNAc); is the post-translational modification which is has a vital role in biological processes; including cell signaling, in response to nutrients, stress and other extracellular stimuli. Materials and methods In this study, we aimed to investigate the role of O-GlcNAc modification in the context of obesity and obesity-associated insulin resistance in adipose tissue. For this purpose, first, the visceral and epididymal adipose tissues of obese and insulin resistant C57BL/6 Lepob/Lepob and wild-type mice were used to determine the O-GlcNAc modification pattern by western blot. Secondly, the external stimulation of O-GlcNAc modification in wild-type mice achieved by intraperitoneal 5 mg/kg/day glucosamine injection every 24 h for 5 days. The effect of increased O-GlcNAc modification on insulin resistance and ER stress investigated in adipose tissues of glucosamine challenged wild-type mice through regulation of the insulin signaling pathway and unfolded protein response (UPR) elements by western blot. In addition to that, the O-GlcNAc status of the insulin receptor substrate-1 (IRS1) investigated in epididymal and visceral adipose tissues of ob/ob, wild-type and glucosamine challenged mice by immunoprecipitation. Results We found that reduced O-GlcNAc levels in visceral and epididymal adipose tissues of obese and insulin-resistant ob/ob mice, although interestingly we observed that increased O-GlcNAc modification in glucosamine challenged wild-type mice resulted in insulin resistance and ER stress. Furthermore, we demonstrated that the IRS1 was modified with O-GlcNAc in visceral and epididymal adipose tissues in both ob/ob mice and glucosamine-injected mice, and was compatible with the serine phosphorylation of this modification. Conclusion Our results suggest that O-GlcNAcylation of proteins is a crucial factor for intracellular trafficking regulates insulin receptor signaling and UPR depending on the cellular state of insulin resistance.


2004 ◽  
Vol 24 (21) ◽  
pp. 9668-9681 ◽  
Author(s):  
Yan-Fang Liu ◽  
Avia Herschkovitz ◽  
Sigalit Boura-Halfon ◽  
Denise Ronen ◽  
Keren Paz ◽  
...  

ABSTRACT Ser/Thr phosphorylation of insulin receptor substrate (IRS) proteins negatively modulates insulin signaling. Therefore, the identification of serine sites whose phosphorylation inhibit IRS protein functions is of physiological importance. Here we mutated seven Ser sites located proximal to the phosphotyrosine binding domain of insulin receptor substrate 1 (IRS-1) (S265, S302, S325, S336, S358, S407, and S408) into Ala. When overexpressed in rat hepatoma Fao or CHO cells, the mutated IRS-1 protein in which the seven Ser sites were mutated to Ala (IRS-17A), unlike wild-type IRS-1 (IRS-1WT), maintained its Tyr-phosphorylated active conformation after prolonged insulin treatment or when the cells were challenged with inducers of insulin resistance prior to acute insulin treatment. This was due to the ability of IRS-17A to remain complexed with the insulin receptor (IR), unlike IRS-1WT, which underwent Ser phosphorylation, resulting in its dissociation from IR. Studies of truncated forms of IRS-1 revealed that the region between amino acids 365 to 430 is a main insulin-stimulated Ser phosphorylation domain. Indeed, IRS-1 mutated only at S408, which undergoes phosphorylation in vivo, partially maintained the properties of IRS-17A and conferred protection against selected inducers of insulin resistance. These findings suggest that S408 and additional Ser sites among the seven mutated Ser sites are targets for IRS-1 kinases that play a key negative regulatory role in IRS-1 function and insulin action. These sites presumably serve as points of convergence, where physiological feedback control mechanisms, which are triggered by insulin-stimulated IRS kinases, overlap with IRS kinases triggered by inducers of insulin resistance to terminate insulin signaling.


Endocrinology ◽  
2010 ◽  
Vol 151 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Christopher M. Mayer ◽  
Denise D. Belsham

Abstract Central insulin signaling is critical for the prevention of insulin resistance. Hyperinsulinemia contributes to insulin resistance, but it is not yet clear whether neurons are subject to cellular insulin resistance. We used an immortalized, hypothalamic, clonal cell line, mHypoE-46, which exemplifies neuronal function and expresses the components of the insulin signaling pathway, to determine how hyperinsulinemia modifies neuronal function. Western blot analysis indicated that prolonged insulin treatment of mHypoE-46 cells attenuated insulin signaling through phospho-Akt. To understand the mechanisms involved, time-course analysis was performed. Insulin exposure for 4 and 8 h phosphorylated Akt and p70-S6 kinase (S6K1), whereas 8 and 24 h treatment decreased insulin receptor (IR) and IR substrate 1 (IRS-1) protein levels. Insulin phosphorylation of S6K1 correlated with IRS-1 ser1101 phosphorylation and the mTOR-S6K1 pathway inhibitor rapamycin prevented IRS-1 serine phosphorylation. The proteasomal inhibitor epoxomicin and the lysosomal pathway inhibitor 3-methyladenine prevented the degradation of IRS-1 and IR by insulin, respectively, and pretreatment with rapamycin, epoxomicin, or 3-methyladenine prevented attenuation of insulin signaling by long-term insulin exposure. Thus, a sustained elevation of insulin levels diminishes neuronal insulin signaling through mTOR-S6K1-mediated IRS-1 serine phosphorylation, proteasomal degradation of IRS-1 and lysosomal degradation of the IR.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Xueping Yang ◽  
Lingli Li ◽  
Ke Fang ◽  
Ruolan Dong ◽  
Jingbin Li ◽  
...  

Wu-Mei-Wan (WMW) is a Chinese herbal formula used to treat type 2 diabetes. In this study, we aimed to explore the effects and mechanisms of WMW on insulin resistance in HepG2 cells. HepG2 cells were pretreated with palmitate (0.25 mM) to impair the insulin signaling pathway. Then, they were treated with different doses of WMW-containing medicated serum and stimulated with 100 nM insulin. Results showed that palmitate could reduce the glucose consumption rate in HepG2 cells and impair insulin signaling related to phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), thereby regulating the downstream signaling pathways. However, medicated serum of WMW restored impaired insulin signaling, upregulated the expression of phospho-IR (pIR), phosphatidylinositol 3-kinase p85 subunit, phosphoprotein kinase B, and glucose transporter 4, and decreased IRS serine phosphorylation. In addition, it decreased the expression of interleukin-1β and tumor necrosis factor-α, which are the key proinflammatory cytokines involved in insulin resistance; besides, it reduced the expression of NLRP3 inflammasome. These results suggested that WMW could alleviate palmitate-induced insulin resistance in HepG2 cells via inhibition of NLRP3 inflammasome and reduction of proinflammatory cytokine production.


Endocrinology ◽  
2010 ◽  
Vol 151 (2) ◽  
pp. 576-585 ◽  
Author(s):  
Christopher M. Mayer ◽  
Denise D. Belsham

Hypothalamic insulin signaling is essential to the maintenance of glucose and energy homeostasis. During pathological states, such as obesity and type 2 diabetes mellitus, insulin signaling is impaired. One key mechanism involved in the development of insulin resistance is lipotoxicity, through increased circulating saturated fatty acids. Although many studies have begun to determine the underlying mechanisms of lipotoxicity in peripheral tissues, little is known about the effects of excess lipids in the brain. We used a hypothalamic, neuronal cell model, mHypoE-44, to understand how the highly prevalent nonesterified fatty acid, palmitate, affects neuronal insulin signaling. Through Western blot analysis, we discerned that prolonged exposure to palmitate impairs insulin activation, as assessed by phosphorylation of Akt. We investigated the role of endoplasmic reticulum (ER) stress, which is known to promote cellular insulin resistance and apoptosis in peripheral tissues. Palmitate treatment induced ER stress through a c-Jun N-terminal kinase (JNK)-dependent pathway because a selective JNK inhibitor blocked palmitate activation of the ER stress pathways eIF2α and X-box binding protein-1. Interestingly, JNK inhibition did not prevent the palmitate-mediated cleaved caspase-3 increase, an apoptotic marker, or insulin signaling attenuation. However, pretreatment with the AMP kinase activator, aminoimidazole carboxamide ribonucleotide, blocked JNK phosphorylation and importantly prevented caspase-3 cleavage and restored insulin signaling during short-term exposure to palmitate. Thus, activation of AMP kinase prevents the deleterious effects of palmitate on hypothalamic neurons by inhibiting the onset of insulin resistance and apoptosis.


Endocrinology ◽  
2012 ◽  
Vol 153 (5) ◽  
pp. 2164-2177 ◽  
Author(s):  
Caroline S. Achard ◽  
D. Ross Laybutt

Chronically elevated fatty acids contribute to insulin resistance through poorly defined mechanisms. Endoplasmic reticulum (ER) stress and the subsequent unfolded protein response (UPR) have been implicated in lipid-induced insulin resistance. However, the UPR is also a fundamental mechanism required for cell adaptation and survival. We aimed to distinguish the adaptive and deleterious effects of lipid-induced ER stress on hepatic insulin action. Exposure of human hepatoma HepG2 cells or mouse primary hepatocytes to the saturated fatty acid palmitate enhanced ER stress in a dose-dependent manner. Strikingly, exposure of HepG2 cells to prolonged mild ER stress activation induced by low levels of thapsigargin, tunicamycin, or palmitate augmented insulin-stimulated Akt phosphorylation. This chronic mild ER stress subsequently attenuated the acute stress response to high-level palmitate challenge. In contrast, exposure of HepG2 cells or hepatocytes to severe ER stress induced by high levels of palmitate was associated with reduced insulin-stimulated Akt phosphorylation and glycogen synthesis, as well as increased expression of glucose-6-phosphatase. Attenuation of ER stress using chemical chaperones (trimethylamine N-oxide or tauroursodeoxycholic acid) partially protected against the lipid-induced changes in insulin signaling. These findings in liver cells suggest that mild ER stress associated with chronic low-level palmitate exposure induces an adaptive UPR that enhances insulin signaling and protects against the effects of high-level palmitate. However, in the absence of chronic adaptation, severe ER stress induced by high-level palmitate exposure induces deleterious UPR signaling that contributes to insulin resistance and metabolic dysregulation.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Hailong Hu ◽  
Xingpei Fan ◽  
Qian Guo ◽  
Xiangjuan Wei ◽  
Daqian Yang ◽  
...  

Abstract Background Silicon dioxide nanoparticles (SiO2 NPs) are one of the most widely utilized NPs in various food sectors. However, the potential endocrine toxicity of SiO2 NPs has not been characterized. Results In the present study, mice were orally administered a series of doses of SiO2 NPs. All doses of SiO2 NPs were absorbed into the blood, liver, and pancreas of the mice. Administration of 100 mg/kg bw (body weight) of SiO2 NPs significantly increased blood glucose levels in mice. However, the same dose of SiO2 fine-particles (FPs) did not result in altered blood glucose. Whole-genome analysis showed that SiO2 NPs affected the expression of genes associated with reactive oxygen species (ROS) production and endoplasmic reticulum (ER) stress. In addition, we showed that SiO2 NPs activated xenobiotic metabolism, resulting in ER stress. Endoplasmic reticulum stress resulted in increased ROS production, which activated the NF-κB pathway leading to expression of inflammatory cytokines. Increased inflammatory cytokine expression resulted in serine phosphorylation of IRS1, which induced insulin resistance (IR). Furthermore these inflammatory cytokines activated the MAPK pathway, which further promoted the serine phosphorylation of IRS1. Insulin resistance resulted in elevated blood glucose. The ER stress inhibitor 4-phenylbutyric acid (4-PBA) inhibited SiO2 NP-induced ROS production. The ROS scavenger N-acetylcysteine (NAC) did not affect SiO2 NP-induced ER stress, but inhibited SiO2 NP-induced activation of the NF-κB and MAPK pathways, expression of inflammatory cytokines, SiO2 NP-induced serine phosphorylation of IRS1, and SiO2 NP-induced elevations of blood glucose. Conclusion Silicon dioxide NPs induced IR through ER stress and generation of ROS, but SiO2 FPs did not. Therefore, lifelong exposure of humans to SiO2 NPs may result in detrimental effects on blood glucose. The results of this study strongly suggested that non-nanoformed SiO2 should be used as food additives.


2016 ◽  
Vol 242 (4) ◽  
pp. 441-447 ◽  
Author(s):  
Qinyue Guo ◽  
Lin Xu ◽  
Jiali Liu ◽  
Huixia Li ◽  
Hongzhi Sun ◽  
...  

Fibroblast growth factor 21 (FGF21) has recently emerged as a novel endocrine hormone involved in the regulation of glucose and lipid metabolism. However, the exact mechanisms whereby FGF21 mediates insulin sensitivity remain not fully understood. In the present study, FGF21was administrated in high-fat diet-induced obese mice and tunicamycin-induced 3T3-L1 adipocytes, and metabolic parameters, endoplasmic reticulum (ER) stress indicators, and insulin signaling molecular were assessed by Western blotting. The administration of FGF21 in obese mice reduced body weight, blood glucose and serum insulin, and increased insulin sensitivity, resulting in alleviation of insulin resistance. Meanwhile, FGF21 treatment reversed suppression of adiponectin expression and restored insulin signaling via inhibiting ER stress in adipose tissue of obese mice. Additionally, suppression of ER stress via the ER stress inhibitor tauroursodeoxycholic acid increased adiponectin expression and improved insulin resistance in obese mice and in tunicamycin-induced adipocytes. In conclusion, our results showed that the administration of FGF21 reversed suppression of adiponectin expression and restored insulin signaling via inhibiting ER stress under the condition of insulin resistance, demonstrating the causative role of ER stress in downregulating adiponectin levels.


2020 ◽  
Vol 11 ◽  
Author(s):  
Han Cheng ◽  
Xiaokun Gang ◽  
Guangyu He ◽  
Yujia Liu ◽  
Yingxuan Wang ◽  
...  

Mitochondria and the endoplasmic reticulum (ER) are connected at multiple sites via what are known as mitochondria-associated ER membranes (MAMs). These associations are known to play an important role in maintaining cellular homeostasis. Impaired MAM signaling has wide-ranging effects in many diseases, such as obesity, diabetes, and neurodegenerative disorders. Accumulating evidence has suggested that MAMs influence insulin signaling through different pathways, including those associated with Ca2+ signaling, lipid metabolism, mitochondrial function, ER stress responses, and inflammation. Altered MAM signaling is a common feature of insulin resistance in different tissues, including the liver, muscle, and even the brain. In the liver, MAMs are key glucose-sensing regulators and have been proposed to be a hub for insulin signaling. Impaired MAM integrity has been reported to disrupt hepatic responses to changes in glucose availability during nutritional transition and to induce hepatic insulin resistance. Meanwhile, these effects can be rescued by the reinforcement of MAM interactions. In contrast, several studies have proposed that enhanced ER-mitochondria connections are detrimental to hepatic insulin signaling and can lead to mitochondrial dysfunction. Thus, given these contradictory results, the role played by the MAM in the regulation of hepatic insulin signaling remains elusive. Similarly, in skeletal muscle, enhanced MAM formation may be beneficial in the early stage of diabetes, whereas continuous MAM enhancement aggravates insulin resistance. Furthermore, recent studies have suggested that ER stress may be the primary pathway through which MAMs induce brain insulin resistance, especially in the hypothalamus. This review will discuss the possible mechanisms underlying MAM-associated insulin resistance as well as the therapeutic potential of targeting the MAM in the treatment of type 2 diabetes.


2017 ◽  
Vol 312 (1) ◽  
pp. F230-F244 ◽  
Author(s):  
Victoria Yum ◽  
Rachel E. Carlisle ◽  
Chao Lu ◽  
Elise Brimble ◽  
Jasmine Chahal ◽  
...  

Proteinuria is one of the primary risk factors for the progression of chronic kidney disease (CKD) and has been implicated in the induction of endoplasmic reticulum (ER) stress. We hypothesized that the suppression of ER stress with a low molecular weight chemical chaperone, 4-phenylbutyric acid (4-PBA), would reduce the severity of CKD and proteinuria in the Dahl salt-sensitive (SS) hypertensive rat. To induce hypertension and CKD, 12-wk-old male rats were placed on a high-salt (HS) diet for 4 wk with or without 4-PBA treatment. We assessed blood pressure and markers of CKD, including proteinuria, albuminuria, and renal pathology. Furthermore, we determined if HS feeding resulted in an impaired myogenic response, subsequent to ER stress. 4-PBA treatment reduced salt-induced hypertension, proteinuria, and albuminuria and preserved myogenic constriction. Furthermore, renal pathology was reduced with 4-PBA treatment, as indicated by lowered expression of profibrotic markers and fewer intratubular protein casts. In addition, ER stress in the glomerulus was reduced, and the integrity of the glomerular filtration barrier was preserved. These results suggest that 4-PBA treatment protects against proteinuria in the SS rat by preserving the myogenic response and by preventing ER stress, which led to a breakdown in the glomerular filtration barrier. As such, alleviating ER stress serves as a viable therapeutic strategy to preserve kidney function and to delay the progression of CKD in the animal model under study.


Sign in / Sign up

Export Citation Format

Share Document