scholarly journals Fibroblast growth factor 21 reverses suppression of adiponectin expression via inhibiting endoplasmic reticulum stress in adipose tissue of obese mice

2016 ◽  
Vol 242 (4) ◽  
pp. 441-447 ◽  
Author(s):  
Qinyue Guo ◽  
Lin Xu ◽  
Jiali Liu ◽  
Huixia Li ◽  
Hongzhi Sun ◽  
...  

Fibroblast growth factor 21 (FGF21) has recently emerged as a novel endocrine hormone involved in the regulation of glucose and lipid metabolism. However, the exact mechanisms whereby FGF21 mediates insulin sensitivity remain not fully understood. In the present study, FGF21was administrated in high-fat diet-induced obese mice and tunicamycin-induced 3T3-L1 adipocytes, and metabolic parameters, endoplasmic reticulum (ER) stress indicators, and insulin signaling molecular were assessed by Western blotting. The administration of FGF21 in obese mice reduced body weight, blood glucose and serum insulin, and increased insulin sensitivity, resulting in alleviation of insulin resistance. Meanwhile, FGF21 treatment reversed suppression of adiponectin expression and restored insulin signaling via inhibiting ER stress in adipose tissue of obese mice. Additionally, suppression of ER stress via the ER stress inhibitor tauroursodeoxycholic acid increased adiponectin expression and improved insulin resistance in obese mice and in tunicamycin-induced adipocytes. In conclusion, our results showed that the administration of FGF21 reversed suppression of adiponectin expression and restored insulin signaling via inhibiting ER stress under the condition of insulin resistance, demonstrating the causative role of ER stress in downregulating adiponectin levels.

2019 ◽  
Vol 104 (8) ◽  
pp. 3327-3336 ◽  
Author(s):  
Diana Barb ◽  
Fernando Bril ◽  
Srilaxmi Kalavalapalli ◽  
Kenneth Cusi

Abstract Context The relationship between plasma fibroblast growth factor 21 (FGF21), insulin resistance, and steatohepatitis has not been systematically assessed. Objective To determine if higher plasma FGF21 is associated with worse steatohepatitis on liver biopsy in patients with nonalcoholic fatty liver disease (NAFLD). Design and Setting Cross-sectional study in a university hospital. Patients Interventions and Main Outcome Measures Patients with a body mass index >25 (n = 187) underwent: (i) euglycemic hyperinsulinemic clamp to assess tissue-specific insulin resistance (IR); (ii) liver magnetic resonance spectroscopy for intrahepatic triglyceride quantification, (iii) liver biopsy (if NAFLD present; n = 146); and (iv) fasting plasma FGF21 levels. Methods and Results Patients were divided into three groups: (i) No NAFLD (n = 41); (ii) No nonalcoholic steatohepatitis (NASH) (patients with isolated steatosis or borderline NASH; n = 52); and (iii) NASH (patients with definite NASH; n = 94). Groups were well-matched for age/sex, prevalence of type 2 diabetes mellitus, and hemoglobin A1c. During euglycemic hyperinsulinemic insulin clamp, insulin sensitivity in skeletal muscle and adipose tissue worsened from No NAFLD to NASH (both P < 0.001). Plasma FGF21 levels correlated inversely with insulin sensitivity in adipose tissue (r = −0.17, P = 0.006) and skeletal muscle (r = −0.23, P = 0.007), but not with liver insulin sensitivity. Plasma FGF21 was higher in patients with NASH (453 ± 262 pg/mL) when compared with the No NASH (341 ± 198 pg/mL, P = 0.03) or No NAFLD (325 ± 289 pg/mL, P = 0.02) groups. Plasma FGF21 increased with the severity of necroinflammation (P = 0.02), and most significantly with worse fibrosis (P < 0.001), but not with worsening steatosis (P = 0.60). Conclusions Plasma FGF21 correlates with severity of steatohepatitis, in particular of fibrosis, in patients with NASH. Measurement of FGF21 may help identify patients at the highest risk of disease progression.


Endocrinology ◽  
2011 ◽  
Vol 152 (11) ◽  
pp. 4080-4093 ◽  
Author(s):  
Natália Tobar ◽  
Alexandre G. Oliveira ◽  
Dioze Guadagnini ◽  
Renata A. Bagarolli ◽  
Guilherme Z. Rocha ◽  
...  

Obesity and type 2 diabetes are characterized by insulin resistance, and the common basis of these events is a chronic and systemic inflammatory process marked by the activation of the c-Jun N-terminal kinase (JNK) and inhibitor-κB kinase (IKKβ)/nuclear factor-κB (NFκB) pathways, up-regulated cytokine synthesis, and endoplasmic reticulum dysfunction. The aim of this study was to evaluate the effects of diacerhein administration, an antiinflammatory drug that reduces the levels of inflammatory cytokines, on insulin sensitivity and signaling in diet-induced obese (DIO) mice. Swiss mice were fed with conventional chow (control group) or a high-fat diet (DIO group). Later, DIO mice were randomly subdivided into a new subgroup (DAR) that received 20 mg/kg diacerhein for 10 d. Western blotting was used to quantify the expression and phosphorylation of insulin receptor, insulin receptor substrate 1, and Akt and of inflammatory mediators that modulate insulin signaling in a negative manner (IKKβ, JNK, and inducible nitric oxide synthase). We show here, for the first time, that the administration of diacerhein in DIO mice improved endoplasmic reticulum stress, reduced JNK and IKKβ phosphorylation, and resulted in a marked improvement in fasting glucose, a decrease in macrophage infiltration in adipose tissue, and a reduced expression and activity of proinflammatory mediators accompanied by an improvement in the insulin signaling mainly in the liver and adipose tissue. Taken together, these results indicate that diacerhein treatment improves insulin sensitivity in obesity, mediated by the reversal of subclinical inflammation, and that this drug may be an alternative therapy for insulin resistance.


Diabetes ◽  
2018 ◽  
Vol 67 (4) ◽  
pp. 594-606 ◽  
Author(s):  
Magdalene K. Montgomery ◽  
Ruzaidi Mokhtar ◽  
Jacqueline Bayliss ◽  
Helena C. Parkington ◽  
Victor M. Suturin ◽  
...  

2020 ◽  
Vol 319 (6) ◽  
pp. E1053-E1060
Author(s):  
Logan K. Townsend ◽  
Henver S. Brunetta ◽  
Marcelo A. S. Mori

Obesity and insulin resistance (IR) are associated with endoplasmic reticulum (ER) stress and mitochondrial dysfunction in several tissues. Although for many years mitochondrial and ER function were studied separately, these organelles also connect to produce interdependent functions. Communication occurs at mitochondria-associated ER membranes (MAMs) and regulates lipid and calcium homeostasis, apoptosis, and the exchange of adenine nucleotides, among other things. Recent evidence suggests that MAMs contribute to organelle, cellular, and systemic metabolism. In obesity and IR models, metabolic tissues such as the liver, skeletal muscle, pancreas, and adipose tissue present alterations in MAM structure or function. The purpose of this mini review is to highlight the MAM disruptions that occur in each tissue during obesity and IR and its relationship with glucose homeostasis and IR. We also discuss the current controversy that surrounds MAMs’ role in the development of IR.


2018 ◽  
Vol 315 (4) ◽  
pp. E676-E693 ◽  
Author(s):  
Valentina Caracciolo ◽  
Jeanette Young ◽  
Donna Gonzales ◽  
Yingchun Ni ◽  
Stephen J. Flowers ◽  
...  

Obesity is associated with adipose tissue inflammation that contributes to insulin resistance. Zinc finger protein 36 (Zfp36) is an mRNA-binding protein that reduces inflammation by binding to cytokine transcripts and promoting their degradation. We hypothesized that myeloid-specific deficiency of Zfp36 would lead to increased adipose tissue inflammation and reduced insulin sensitivity in diet-induced obese mice. As expected, wild-type (Control) mice became obese and diabetic on a high-fat diet, and obese mice with myeloid-specific loss of Zfp36 [knockout (KO)] demonstrated increased adipose tissue and liver cytokine mRNA expression compared with Control mice. Unexpectedly, in glucose tolerance testing and hyperinsulinemic-euglycemic clamp studies, myeloid Zfp36 KO mice demonstrated improved insulin sensitivity compared with Control mice. Obese KO and Control mice had similar macrophage infiltration of the adipose depots and similar peripheral cytokine levels, but lean and obese KO mice demonstrated increased Kupffer cell (KC; the hepatic macrophage)-expressed Mac2 compared with lean Control mice. Insulin resistance in obese Control mice was associated with enhanced Zfp36 expression in KCs. Compared with Control mice, KO mice demonstrated increased hepatic mRNA expression of a multitude of classical (M1) inflammatory cytokines/chemokines, and this M1-inflammatory hepatic milieu was associated with enhanced nuclear localization of IKKβ and the p65 subunit of NF-κB. Our data confirm the important role of innate immune cells in regulating hepatic insulin sensitivity and lipid metabolism, challenge-prevailing models in which M1 inflammatory responses predict insulin resistance, and indicate that myeloid-expressed Zfp36 modulates the response to insulin in mice.


2019 ◽  
Vol 3 (4) ◽  
pp. 825-837 ◽  
Author(s):  
Satu Seppä ◽  
Sirpa Tenhola ◽  
Raimo Voutilainen

Abstract Context Among cytokines, fibroblast growth factor 21 (FGF21), adiponectin (Adn), and irisin have been considered potential biomarkers for insulin sensitivity (IS). Objective We evaluated whether serum FGF21, Adn, and irisin associate with markers of IS and serum lipids in 12-year-old children. Design, Participants, and Main Outcome Measures This cohort study included 192 12-year-old children (109 girls). Seventy-eight of them had been born appropriate for gestational age (AGA), 70 small for gestational age (SGA), and 44 from preeclamptic pregnancies (PREs) as AGA. Fasting serum FGF21, Adn, irisin, lipids, inflammatory markers, and IS markers were measured. Quantitative insulin sensitivity check index (QUICKI) was calculated. Results The means of serum FGF21, high molecular weight (HMW) Adn, and irisin did not differ between the sexes or between the SGA, AGA, and PRE children. In the whole study population, FGF21 associated positively with irisin and uric acid and negatively with leptin and high-density lipoprotein cholesterol (HDL-C). HMW Adn associated positively with total Adn, HDL-C, leptin, and SHBG. Apart from FGF21, irisin associated positively with insulin, high-sensitivity C-reactive protein, γ-glutamyltransferase, and triglycerides, and negatively with QUICKI, SHBG, and IGF binding protein-1. In multivariate regression analyses, irisin predicted lower IS and HMW Adn predicted higher HDL-C body mass index-independently, whereas FGF21 had no independent contribution to IS or lipid variables. Conclusion In 12-year-old children, serum irisin was associated with markers reflecting reduced IS. HMW Adn predicted HDL-C, whereas FGF21 did not contribute to IS or lipid parameters in multivariate regression analyses.


2020 ◽  
Vol 21 (18) ◽  
pp. 6836
Author(s):  
Hyo Jin Maeng ◽  
Gha Young Lee ◽  
Jae Hyun Bae ◽  
Soo Lim

Fibroblast growth factor 21 (FGF21) is a hormonal regulator of lipid and glucose metabolism. We aimed to investigate the effect of an FGF21 analogue (LY2405319) on the development of atherosclerosis and its associated parameters. ApoE−/− mice were fed an atherogenic diet for 14 weeks and were randomly assigned to control (saline) or FGF21 (0.1 mg/kg) treatment group (n = 10/group) for 5 weeks. Plaque size in the aortic arch/valve areas and cardiovascular risk markers were evaluated in blood and tissues. The effects of FGF21 on various atherogenesis-related pathways were also assessed. Atherosclerotic plaque areas in the aortic arch/valve were significantly smaller in the FGF21 group than in controls after treatment. FGF21 significantly decreased body weight and glucose concentrations, and increased circulating adiponectin levels. FGF21 treatment alleviated insulin resistance and decreased circulating concentrations of triglycerides, which were significantly correlated with plaque size. FGF21 treatment reduced lipid droplets in the liver and decreased fat cell size and inflammatory cell infiltration in the abdominal visceral fat compared with the control group. The monocyte chemoattractant protein-1 levels were decreased and β-hydroxybutyrate levels were increased by FGF21 treatment. Uncoupling protein 1 expression in subcutaneous fat was greater and fat cell size in brown fat was smaller in the FGF21 group compared with controls. Administration of FGF21 showed anti-atherosclerotic effects in atherosclerosis-prone mice and exerted beneficial effects on critical atherosclerosis pathways. Improvements in inflammation and insulin resistance seem to be mechanisms involved in the mitigation of atherosclerosis by FGF21 therapy.


Sign in / Sign up

Export Citation Format

Share Document