Calpastatin overexpression impairs postinfarct scar healing in mice by compromising reparative immune cell recruitment and activation

2015 ◽  
Vol 309 (11) ◽  
pp. H1883-H1893 ◽  
Author(s):  
Feng Wan ◽  
Emmanuel Letavernier ◽  
Claude Jourdan Le Saux ◽  
Amal Houssaini ◽  
Shariq Abid ◽  
...  

The activation of the calpain system is involved in the repair process following myocardial infarction (MI). However, the impact of the inhibition of calpain by calpastatin, its natural inhibitor, on scar healing and left ventricular (LV) remodeling is elusive. Male mice ubiquitously overexpressing calpastatin (TG) and wild-type (WT) controls were subjected to an anterior coronary artery ligation. Mortality at 6 wk was higher in TG mice (24% in WT vs. 44% in TG, P < 0.05) driven by a significantly higher incidence of cardiac rupture during the first week post-MI, despite comparable infarct size and LV dysfunction and dilatation. Calpain activation post-MI was blunted in TG myocardium. In TG mice, inflammatory cell infiltration and activation were reduced in the infarct zone (IZ), particularly affecting M2 macrophages and CD4+ T cells, which are crucial for scar healing. To elucidate the role of calpastatin overexpression in macrophages, we stimulated peritoneal macrophages obtained from TG and WT mice in vitro with IL-4, yielding an abrogated M2 polarization in TG but not in WT cells. Lymphopenic Rag1−/− mice receiving TG splenocytes before MI demonstrated decreased T-cell recruitment and M2 macrophage activation in the IZ day 5 after MI compared with those receiving WT splenocytes. Calpastatin overexpression prevented the activation of the calpain system after MI. It also impaired scar healing, promoted LV rupture, and increased mortality. Defective scar formation was associated with blunted CD4+ T-cell and M2-macrophage recruitment.

2015 ◽  
Vol 37 (3) ◽  
pp. 979-990 ◽  
Author(s):  
Yi Jiang ◽  
Jianwen Bai ◽  
Lunxian Tang ◽  
Pei Zhang ◽  
Jun Pu

Background/Aims: Over-activation of cellular inflammatory effectors adversely affects myocardial function after acute myocardial infarction (AMI). The CC-chemokine CCL21 is, via its receptor CCR7, one of the key regulators of inflammation and immune cell recruitment, participates in various inflammatory disorders, including cardiovascular ones. This study explored the therapeutic effect of an anti-CCL21 antibody in cardiac remodeling after myocardial infarction. Methods and Results: An animal model of AMI generated by left anterior descending coronary artery ligation in C57BL/6 mice resulted in higher levels of circulating CCL21 and cardiac CCR7. Neutralization of CCL21 by intravenous injection of anti-CCL21 monoclonal antibody reduced infarct size after AMI, decreased serum levels of neutrophil and monocyte chemo attractants post AMI, diminished neutrophil and macrophage recruitment in infarcted myocardium, and suppressed MMP-9 and total collagen content in myocardium. Anti-CCL21 treatment also limited cardiac enlargement and improved left ventricular function. Conclusions: Our study indicated that CCL21 was involved in cardiac remodeling post infarction and anti-CCL21 strategies might be useful in the treatment of AMI.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ye Wang ◽  
Morvarid Mohseni ◽  
Angelo Grauel ◽  
Javier Estrada Diez ◽  
Wei Guan ◽  
...  

AbstractSHP2 is a ubiquitous tyrosine phosphatase involved in regulating both tumor and immune cell signaling. In this study, we discovered a novel immune modulatory function of SHP2. Targeting this protein with allosteric SHP2 inhibitors promoted anti-tumor immunity, including enhancing T cell cytotoxic function and immune-mediated tumor regression. Knockout of SHP2 using CRISPR/Cas9 gene editing showed that targeting SHP2 in cancer cells contributes to this immune response. Inhibition of SHP2 activity augmented tumor intrinsic IFNγ signaling resulting in enhanced chemoattractant cytokine release and cytotoxic T cell recruitment, as well as increased expression of MHC Class I and PD-L1 on the cancer cell surface. Furthermore, SHP2 inhibition diminished the differentiation and inhibitory function of immune suppressive myeloid cells in the tumor microenvironment. SHP2 inhibition enhanced responses to anti-PD-1 blockade in syngeneic mouse models. Overall, our study reveals novel functions of SHP2 in tumor immunity and proposes that targeting SHP2 is a promising strategy for cancer immunotherapy.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Adolfo G Mauro ◽  
Donatas Kraskauskas ◽  
Bassem M Mohammed ◽  
Bernard J Fisher ◽  
Eleonora Mezzaroma ◽  
...  

Introduction: L-gulonolactone oxidase (Gulo) is the rate limiting enzyme for Vitamin C (VitC) biosynthesis. Humans rely on dietary VitC for collagen synthesis, extracellular matrix formation, and tissue regeneration. VitC deficiency is an unrecognized condition and its role in cardiac homeostasis and post-acute myocardial infarction (AMI) remodeling is unknown. Hypothesis: Low levels of VitC impair cardiac function and tissue repair following AMI. Methods: Adult male Gulo -/- knockout mice (C57BL6 background, N=8) and control C57BL (N=8), which are able to synthesize VitC were used. VitC deficiency was maintained supplying low levels of VitC (30mg/l) to Gulo -/- mice in drinking water. Mice underwent M-mode and Doppler echocardiography to measure left ventricular (LV) diameters and wall thicknesses, fractional shortening (FS), E and A waves, E/A ratio, isovolumetric relaxation time (IRT) and myocardial performance index (MPI). Experimental AMI was induced by coronary artery ligation for 7 days. An additional group of Gulo -/- were mice supplemented with physiological levels of VitC (330 mg/l) and underwent AMI. Results: VitC deficient Gulo -/- mice exhibited significantly reduced LV wall thicknesses, reduced FS, and impaired diastolic function, measured as significantly reduced E/A ratio and longer IRT (Panel A, B & C). Following AMI, 100% (8/8) of deficient Gulo -/- mice died within 5 days. Supplementation with physiological levels of VitC significantly improved survival after AMI (Panel D). Conclusion: VitC deficiency impairs systolic and diastolic function. Moreover, VitC is critical for the post-AMI survival.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Ana Carolina M Omoto ◽  
Fábio N Gava ◽  
Mauro de Oliveira ◽  
Carlos A Silva ◽  
Rubens Fazan ◽  
...  

Myocardium infarction (MI) elicited by coronary artery ligation (CAL) is commonly used to induce chronic heart failure (HF) in rats. However, CAL shows high mortality rates. Given that ischemia-reperfusion (IR) may cause the development of HF, this approach may be useful for obtaining a model of HF with low mortality rates. Therefore, it was compared the model of CAL vs. IR in rats, evaluating the mortality and cardiac morphological and functional aspects. The IR consisted of 30 minutes of cardiac ischemia. Wistar rats were assigned into three groups: CAL: n=18; IR: n=7; SHAM (fictitious IR): n=7. After four weeks of CAL, the subjects were evaluated by echocardiography and ventriculography as well. The statistical analysis consisted of ANOVA combined with Tukey’s posthoc test (p<0.05). There were no deaths in the IR and SHAM groups, whereas in the CAL group the mortality rate was 33.33% (6 out of 18). In the CAL group echocardiography showed increased left ventricular (LV) cavity during systole (8.3 ± 1mm) and diastole (10.5 ± 1mm); decreased LV free wall during systole (1.4 ± 0.5 mm); increased left atrium/aorta (2.3 ± 0.4) ratio. These changes were not significant in IR (4.8 ± 0.5mm, 7.6 ± 0.6mm, 2.6 ± 0.3 mm, 1.6 ± 0.2) and SHAM (4.6 ± 0.6 mm, 7.7 ± 0.8mm, 2.8 ± 0.4mm, 1.5 ± 0.2) groups. There was also the reduction in the ejection fraction in the CAL group (41 ± 12 %) when compared with IR (65 ± 9%) and SHAM (69 ± 7%) groups. The tissue Doppler analysis from the lateral mitral annulus showed reduction in E′ in CAL (-29 ± 8 mm/s) and IR (-31± 9 mm/s) groups when compared with the SHAM (-48 ± 11 mm/s) group. The ventriculography in the CAL group showed smaller maximum dP/dt (6519 ± 1062) and greater end-diastolic pressure (33 ± 8 mmHg) when compared with IR (8716 ± 756 mmHg/s; 9 ± 9 mmHg) and SHAM (7989 ± 1230 mmHg/s; 9 ± 7 mmHg) groups. The CAL group presented transmural infarct size of 40% of the left ventricular wall, measured under histopathological examination. In conclusion, IR for 30 minutes caused only small changes in LV diastolic function, assessed by tissue Doppler; however, the IR was not effective for promoting HF, as observed with CAL. Thus, it is possible that prolonged IR is necessary for promoting significant HF in rats.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Detlef Obal ◽  
Kenneth Brittian ◽  
Michael Book ◽  
Aruni Bhatnagar ◽  
Yiru Guo ◽  
...  

Background: Interruption of cardiac stromal cell derived factor 1 (SDF1)-CXCR4 axis by chronic AMD3100 administration increased myocardial injury after permanent coronary artery ligation demonstrating the important role of this chemokine in cardiac regeneration. Hypothesis: Cardiomyocyte specific conditional overexpression of SDF1 prevents heart failure after permanent coronary ligation and facilitates cardiac regeneration. Methods and Results: Tetracycline-controlled, αMyHC promoter directed overexpression of cardiac SDF1, resulted in a significant increase of SDF1 expression (SDF1: 8.1 ng/mg protein) compared to littermate WT mice (0.02 ng/mg protein) four weeks after doxycycline withdraw. SDF1 overexpression increased AKT and casein kinase 1 levels in the heart. Although there was no difference in cardiac function and scar size 1 week after infarction, SDF1 overexpression improved left ventricular (LV) ejection fraction (SDF1 [n=13]: 47±5% [mean±SEM] vs. WT [n=15]: 29±4%, p<0.05) decreased end-diastolic volume (78±10 vs. 158±30, p<0.05) and reduced infarct size measured by trichrome staining (13±3% vs. 23±3% of LV wall, p<0.05) 4 weeks after permanent ligation. Bromodeoxyuridine (BrdU) staining revealed increased regeneration indicated by a 5-fold increase in BrdU + cardiomyocyte (CM) nuclei in the borderzone of the infarct (22±3% vs. 5±1% CM nuclei, p<0.01). Increased proliferation in SDF1 mice was confirmed by a higher number of KI67 + cells compared to WT mice. Cardiomyocyte cross sectional area in the border zone was significantly reduced in SDF1 mice (365±13 μm 2 vs. 434±10 μm 2 , p<0.001) while capillary density was unchanged (2348±151/ mm 2 vs. 2498±153/ mm 2 ) compared to WT mice. Conclusion: This study demonstrates for the first time that cardiac specific overexpression of SDF1 increases myocardial regeneration and improves LV function 4 weeks after permanent coronary ligation.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Liang Xie ◽  
Rikeish R Muralitharan ◽  
Evany Dinakis ◽  
Michael E Nakai ◽  
Hamdi Jama ◽  
...  

High fibre (HF) diet protects against hypertension via the production of acidic metabolites, e.g. short-chain fatty acids, by the gut microbiota. While these metabolites have a direct role in blood pressure (BP) regulation, their acidic nature may activate proton-sensing receptors, which have anti-inflammatory functions. G-protein coupled receptor 65 (GPR65) is a proton-sensing receptor activated around pH 6.5 and is critical for gut homeostasis. We hypothesized that GPR65 is involved in the cardiovascular protection by dietary fibre. We first measured cecal pH of C57BL/6 (WT) mice after a 7-day dietary intervention with either HF or low fibre (LF) diets (n=6/group). HF diet lowered cecal pH to a level where GPR65 is highly activated, compared to the LF diet (6.5±0.1 vs 7.6±0.1, P<0.001). The impact of pH and GPR65 on T cell production of IFNγ, a pro-inflammatory cytokine, in vitro was measured by flow cytometry. Acidic pH inhibited the production of IFNγ by CD8+ T cells (pH 6.5 vs pH 7.5, P<0.001). Cells lacking GPR65 had higher IFNγ at both pH (P<0.001). To determine if GPR65 is involved in BP regulation by dietary fibre, WT and GPR65 knockout ( Gpr65 -/- ) mice were implanted with minipumps containing angiotensin II (Ang II, 0.5mg/kg/day, 28 days, n=8-9/group) and fed with HF diet. BP, cardiorenal function and immune cell infiltration were measured. Gpr65 -/- mice had higher BP compared to WT mice after 2 weeks (mean arterial pressure ± SEM; WT 79.8±2.4 vs Gpr65 -/- 95.8±1.6mmHg, P<0.001) and 4 weeks of Ang II infusion (WT 92.3±2.4 vs Gpr65 -/- 99.5±1.3, P=0.062). Gpr65 -/- mice developed cardiac (P=0.035) and renal (P=0.025) hypertrophy, and impaired renal natriuretic (P=0.054) and diuretic (P=0.056) function compared to WT mice. This was accompanied by higher macrophage (P=0.009) and γδ T cell (P=0.014) infiltration in the kidneys. In conclusion, our data suggest that pH-sensing by GPR65 contributes to the protection against hypertension by dietary fibre via inflammatory mechanisms. This is a novel mechanism that contributes to BP regulation via the gut microbiota.


1989 ◽  
Vol 66 (2) ◽  
pp. 712-719 ◽  
Author(s):  
T. I. Musch ◽  
R. L. Moore ◽  
P. G. Smaldone ◽  
M. Riedy ◽  
R. Zelis

The hemodynamic response to maximal exercise was determined in sedentary and trained rats with a chronic myocardial infarction (MI) produced by coronary artery ligation and in rats that underwent sham operations (SHAM). Infarct size in the MI groups of rats comprised 28–29% of the total left ventricle and resulted in both metabolic and hemodynamic changes that suggested that these animals had moderate compensated heart failure. The training regimen used in the present study produced significant increases in maximal O2 uptake (VO2max) when expressed in absolute terms (ml/min) or when normalized for body weight (ml.min-1.kg-1) and consisted of treadmill running at work loads that were equivalent to 70–80% of the animal's VO2max for a period of 60 min/day, 5 days/wk over an 8- to 10-wk interval. This training paradigm produced two major cardiocirculatory adaptations in the MI rat that had not been elicited previously when using a training paradigm of a lower intensity. First, the decrement in the maximal heart rate response to exercise (known as “chronotropic incompetence”) found in the sedentary MI rat was completely reversed by endurance training. Second, the downregulation of cardiac myosin isozyme composition from the fast ATPase V1 isoform toward the slower ATPase (V2 and V3) isoforms in the MI rat was partially reversed by endurance training. These cardiac adaptations occurred without a significant increase in left ventricular pump function as an increase in maximal cardiac output (Qmax) and maximal stroke volume (SVmax) did not occur in the trained MI rat.(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
Vol 26 (4) ◽  
pp. 351-357 ◽  
Author(s):  
W.G. Kim ◽  
Y.C. Shin ◽  
S.W. Hwang ◽  
C. Lee ◽  
C.Y. Na

We report a comparison of the effects of myocardial infarction in dogs and sheep using sequential ligation of the left anterior descending artery (LAD) and its diagonal branch (DA), with hemodynamic, ultrasonographic and pathological evaluations. Five animals were used in each group. After surgical preparation, the LAD was ligated at a point approximately 40% of the distance from the apex to the base of the heart, and after one hour, the DA was ligated at the same level. Hemodynamic and ultrasonographic measurements were performed preligation, 30 minutes after LAD ligation, and 1 hour after DA ligation. As a control, two animals in each group were used for the simultaneous ligation of the LAD and the DA. Two months after the coronary ligation, the animals were evaluated as previously, and killed for postmortem examination of their hearts. All seven animals in the dog group survived the experimental procedures, while in the sheep group only animals with sequential ligation of the LAD and DA survived. Statistically significant decreases in systemic arterial blood pressure and cardiac output, and an increase in the pulmonary artery capillary wedge pressure (PACWP) were observed one hour after sequential ligation of the LAD and its DA in the sheep, while only systemic arterial pressures decreased in the dog. Ultrasonographic analyses demonstrated variable degrees of anteroseptal dyskinesia and akinesia in all sheep, but in no dogs. Data two months after coronary artery ligation showed significant increases in central venous pressure, pulmonary artery pressure, and PACWP in the sheep, but not in the dog. Left ventricular end-diastolic dimension and left ventricular end-systolic dimension in ultrasonographic studies were also increased only in the sheep. Pathologically, the well-demarcated thin-walled transmural anteroseptal infarcts with chamber enlargement were clearly seen in all specimens of sheep, and only-mild-to-moderate chamber enlargements with endocardial fibrosis were observed in the dog hearts. In conclusion, this study confirms that the dog is not a suitable model for myocardial infarction with failure by coronary artery ligation despite negligent operative mortality, when compared directly with an ovine model.


1991 ◽  
Vol 261 (6) ◽  
pp. H1979-H1987 ◽  
Author(s):  
M. Gopalakrishnan ◽  
D. J. Triggle ◽  
A. Rutledge ◽  
Y. W. Kwon ◽  
J. A. Bauer ◽  
...  

To examine the status of ATP-sensitive K+ (K+ATP) channels and 1,4-dihydropyridine-sensitive Ca2+ (Ca2+DHP) channels during experimental cardiac failure, we have measured the radioligand binding properties of [3H]glyburide and [3H]PN 200 110, respectively, in tissue homogenates from the rat cardiac left ventricle, right ventricle, and brain 4 wk after myocardial infarction induced by left coronary artery ligation. The maximal values (Bmax) for [3H]glyburide and [3H]PN 200 110 binding were reduced by 39 and 40%, respectively, in the left ventricle, and these reductions showed a good correlation with the right ventricle-to-body weight ratio in heart-failure rats. The ligand binding affinities were not altered. In the hypertrophied right ventricle, Bmax values for both the ligands were not significantly different when data were normalized to DNA content or right ventricle weights but showed an apparent reduction when normalized to unit protein or tissue weight. Moderate reductions in channel densities were observed also in whole brain homogenates from heart failure rats. Assessment of muscarinic receptors, beta-adrenoceptors and alpha 1-adrenoceptors by [3H]quinuclidinyl benzilate, [3H]dihydroalprenolol, and [3H]prazosin showed reductions in left ventricular muscarinic and beta-adrenoceptor densities but not in alpha 1-adrenoceptor densities, consistent with earlier observations. It is suggested that these changes may in part contribute to the pathology of cardiac failure.


2018 ◽  
Vol 2 ◽  
pp. 105 ◽  
Author(s):  
Andrew Mwale ◽  
Annemarie Hummel ◽  
Leonard Mvaya ◽  
Raphael Kamng'ona ◽  
Elizabeth Chimbayo ◽  
...  

Background: HIV infection is associated with increased risk to lower respiratory tract infections (LRTI). However, the impact of HIV infection on immune cell populations in the lung is not well defined. We sought to comprehensively characterise the impact of HIV infection on immune cell populations in the lung. Methods: Twenty HIV-uninfected controls and 17 HIV-1 infected ART-naïve adults were recruited from Queen Elizabeth Central Hospital, Malawi. Immunophenotyping of lymphocyte and myeloid cell populations was done on bronchoalveolar lavage fluid and peripheral blood cells. Results: We found that the numbers of CD8 + T cells, B cells and gamma delta T cells were higher in BAL fluid of HIV-infected adults compared to HIV-uninfected controls (all p<0.05). In contrast, there was no difference in the numbers of alveolar CD4 + T cells in HIV-infected adults compared to HIV-uninfected controls (p=0.7065). Intermediate monocytes were the predominant monocyte subset in BAL fluid (HIV-, 63%; HIV+ 81%), while the numbers of classical monocytes was lower in HIV-infected individuals compared to HIV-uninfected adults (1 × 10 5 vs. 2.8 × 10 5 cells/100ml of BAL fluid, p=0.0001). The proportions of alveolar macrophages and myeloid dendritic cells was lower in HIV-infected adults compared to HIV-uninfected controls (all p<0.05). Conclusions: Chronic HIV infection is associated with broad alteration of immune cell populations in the lung, but does not lead to massive depletion of alveolar CD4 + T cells. Disruption of alveolar immune cell homeostasis likely explains in part the susceptibility for LRTIs in HIV-infected adults.


Sign in / Sign up

Export Citation Format

Share Document