HSP70.1 and -70.3 are required for late-phase protection induced by ischemic preconditioning of mouse hearts

2003 ◽  
Vol 285 (2) ◽  
pp. H866-H874 ◽  
Author(s):  
Craig R. Hampton ◽  
Akira Shimamoto ◽  
Christine L. Rothnie ◽  
Jeaneatte Griscavage-Ennis ◽  
Albert Chong ◽  
...  

We investigated the role of inducible heat shock proteins 70.1 and 70.3 (HSP70.1 and HSP70.3, respectively) in myocardial ischemic preconditioning (IP) in mice. Wild-type (WT) mice and HSP70.1- and HSP70.3-null [HSP70.1/3(–/–)] mice were subjected to IP and examined 24 h later during the late phase of protection. IP significantly increased steady-state levels of HSP70.1 and HSP70.3 mRNA and expression of inducible HSP70 protein in WT myocardium. To assess protection against tissue injury, mice were subjected to 30 min of regional ischemia and 3 h of reperfusion. In WT mice, IP reduced infarct size by 43% compared with sham IP-treated mice. In contrast, IP did not reduce infarct size in HSP70.1/3(–/–) mice. Absence of inducible HSP70.1 and HSP70.3 had no effect, however, on classical or early-phase protection produced by IP, which significantly reduced infarct size in HSP70.1/3(–/–) mice. We conclude that inducible HSP70.1 and HSP70.3 are required for late-phase protection against infarction following IP in mice.

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Lin Song ◽  
Lijuan Cao ◽  
Rui Liu ◽  
Hui Ma ◽  
Yanan Li ◽  
...  

AbstractGlucocorticoids (GC) are widely used clinically, despite the presence of significant side effects, including glucocorticoid-induced osteoporosis (GIOP). While GC are believed to act directly on osteoblasts and osteoclasts to promote osteoporosis, the detailed underlying molecular mechanism of GC-induced osteoporosis is still not fully elucidated. Here, we show that lymphocytes play a pivotal role in regulating GC-induced osteoporosis. We show that GIOP could not be induced in SCID mice that lack T cells, but it could be re-established by adoptive transfer of splenic T cells from wild-type mice. As expected, T cells in the periphery are greatly reduced by GC; instead, they accumulate in the bone marrow where they are protected from GC-induced apoptosis. These bone marrow T cells in GC-treated mice express high steady-state levels of NF-κB receptor activator ligand (RANKL), which promotes the formation and maturation of osteoclasts and induces osteoporosis. Taken together, these findings reveal a critical role for T cells in GIOP.


2000 ◽  
Vol 279 (3) ◽  
pp. H1071-H1078 ◽  
Author(s):  
R. Ray Morrison ◽  
Rachael Jones ◽  
Anne M. Byford ◽  
Alyssa R. Stell ◽  
Jason Peart ◽  
...  

The role of A1adenosine receptors (A1AR) in ischemic preconditioning was investigated in isolated crystalloid-perfused wild-type and transgenic mouse hearts with increased A1AR. The effect of preconditioning on postischemic myocardial function, lactate dehydrogenase (LDH) release, and infarct size was examined. Functional recovery was greater in transgenic versus wild-type hearts (44.8 ± 3.4% baseline vs. 25.6 ± 1.7%). Preconditioning improved functional recovery in wild-type hearts from 25.6 ± 1.7% to 37.4 ± 2.2% but did not change recovery in transgenic hearts (44.8 ± 3.4% vs. 44.5 ± 3.9%). In isovolumically contracting hearts, pretreatment with selective A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine attenuated the improved functional recovery in both wild-type preconditioned (74.2 ± 7.3% baseline rate of pressure development over time untreated vs. 29.7 ± 7.3% treated) and transgenic hearts (84.1 ± 12.8% untreated vs. 42.1 ± 6.8% treated). Preconditioning wild-type hearts reduced LDH release (from 7,012 ± 1,451 to 1,691 ± 1,256 U · l−1 · g−1 · min−1) and infarct size (from 62.6 ± 5.1% to 32.3 ± 11.5%). Preconditioning did not affect LDH release or infarct size in hearts overexpressing A1AR. Compared with wild-type hearts, A1AR overexpression markedly reduced LDH release (from 7,012 ± 1,451 to 917 ± 1,123 U · l−1 · g−1 · min−1) and infarct size (from 62.6 ± 5.1% to 6.5 ± 2.1%). These data demonstrate that murine preconditioning involves endogenous activation of A1AR. The beneficial effects of preconditioning and A1AR overexpression are not additive. Taken with the observation that A1AR blockade equally eliminates the functional protection resulting from both preconditioning and transgenic A1AR overexpression, we conclude that the two interventions affect cardioprotection via common mechanisms or pathways.


2000 ◽  
Vol 278 (1) ◽  
pp. H305-H312 ◽  
Author(s):  
Ryan M. Fryer ◽  
Janis T. Eells ◽  
Anna K. Hsu ◽  
Michele M. Henry ◽  
Garrett J. Gross

We examined the role of the sarcolemmal and mitochondrial KATPchannels in a rat model of ischemic preconditioning (IPC). Infarct size was expressed as a percentage of the area at risk (IS/AAR). IPC significantly reduced infarct size (7 ± 1%) versus control (56 ± 1%). The sarcolemmal KATP channel-selective antagonist HMR-1098 administered before IPC did not significantly attenuate cardioprotection. However, pretreatment with the mitochondrial KATP channel-selective antagonist 5-hydroxydecanoic acid (5-HD) 5 min before IPC partially abolished cardioprotection (40 ± 1%). Diazoxide (10 mg/kg iv) also reduced IS/AAR (36.2 ± 4.8%), but this effect was abolished by 5-HD. As an index of mitochondrial bioenergetic function, the rate of ATP synthesis in the AAR was examined. Untreated animals synthesized ATP at 2.12 ± 0.30 μmol ⋅ min−1 ⋅ mg mitochondrial protein−1. Rats subjected to ischemia-reperfusion synthesized ATP at 0.67 ± 0.06 μmol ⋅ min−1 ⋅ mg mitochondrial protein−1. IPC significantly increased ATP synthesis to 1.86 ± 0.23 μmol ⋅ min−1 ⋅ mg mitochondrial protein−1. However, when 5-HD was administered before IPC, the preservation of ATP synthesis was attenuated (1.18 ± 0.15 μmol ⋅ min−1 ⋅ mg mitochondrial protein−1). These data are consistent with the notion that inhibition of mitochondrial KATPchannels attenuates IPC by reducing IPC-induced protection of mitochondrial function.


2001 ◽  
Vol 280 (1) ◽  
pp. H384-H391 ◽  
Author(s):  
Guan-Ying Wang ◽  
Song Wu ◽  
Jian-Ming Pei ◽  
Xiao-Chun Yu ◽  
Tak-Ming Wong

Two series of experiments were performed in the isolated perfused rat heart to determine the role of κ- and δ-opioid receptors (OR) in cardioprotection of ischemic preconditioning (IP). In the first series of experiments, it was found that IP with two cycles of 5-min regional ischemia followed by 5-min reperfusion each reduced infarct size induced by 30-min ischemia, and the ameliorating effect of IP on infarct was attenuated with blockade of either 5 × 10−6 mol/l nor-binaltorphimine (nor-BNI), a selective κ-OR antagonist, or 5 × 10−6 mol/l naltrindole (NTD), a selective δ-OR antagonist. The second series showed that U50,488H, a selective κ-OR agonist, ord-Ala2-d-leu5-enkephalin (DADLE), a selective δ-OR agonist, dose dependently reduced the infarct size induced by ischemia, which mimicked the effects of IP. The effect of 10−5 mol/l U50,488H on infarct was significantly attenuated by blockade of protein kinase C (PKC) with specific PKC inhibitors, 5 × 10−6 mol/l chelerythrine or 8 × 10−7 mol/l calphostin C, as well as by blockade of ATP-sensitive K+ (KATP) channels with blockers of the channel, 10−5 mol/l glibenclamide or 10−4 mol/l 5-hydroxydecanoate. IP also reduced arrhythmia induced by ischemia. Nor-BNI, but not NTD, attenuated, while U50,488H, but not DADLE, mimicked the antiarrhythmic action of IP. In conclusion, the present study has provided first evidence that κ-OR mediates the ameliorating effects of IP on infarct and arrhythmia induced by ischemia, whereas δ-OR mediates the effects only on infarct. Both PKC and KATP channels mediate the effect of activation of κ-OR on infarct.


2008 ◽  
Vol 28 (10) ◽  
pp. 1722-1732 ◽  
Author(s):  
Jason Liauw ◽  
Stanley Hoang ◽  
Michael Choi ◽  
Cagla Eroglu ◽  
Matthew Choi ◽  
...  

Thrombospondins 1 and 2 (TSP-1/2) belong to a family of extracellular glycoproteins with angiostatic and synaptogenic properties. Although TSP-1/2 have been postulated to drive the resolution of postischemic angiogenesis, their role in synaptic and functional recovery is unknown. We investigated whether TSP-1/2 are necessary for synaptic and motor recovery after stroke. Focal ischemia was induced in 8- to 12-week-old wild-type (WT) and TSP-1/2 knockout (KO) mice by unilateral occlusion of the distal middle cerebral artery and the common carotid artery (CCA). Thrombospondins 1 and 2 increased after stroke, with both TSP-1 and TSP-2 colocalizing mostly to astrocytes. Wild-type and TSP-1/2 KO mice were compared in angiogenesis, synaptic density, axonal sprouting, infarct size, and functional recovery at different time points after stroke. Using the tongue protrusion test of motor function, we observed that TSP-1/2 KO mice exhibited significant deficit in their ability to recover function ( P < 0.05) compared with WT mice. No differences were found in infarct size and blood vessel density between the two groups after stroke. However, TSP-1/2 KO mice exhibited significant synaptic density and axonal sprouting deficits. Deficiency of TSP-1/2 leads to impaired recovery after stroke mainly due to the role of these proteins in synapse formation and axonal outgrowth.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Bao Puente ◽  
Junhui Sun ◽  
Maria Fergusson ◽  
Julia Liu ◽  
Anna Kosmach ◽  
...  

Background: Mitochondrial calcium flux and signaling is integral to cardiac function and contraction. However, during pathologic conditions such as ischemic/reperfusion injury, mitochondrial calcium overload can induce the opening of the mitochondrial permeability transitioning pore (PTP), resulting in the collapse of mitochondrial membrane potential, ATP depletion, and generation of reactive oxygen species, all together leading to cell death. Hence, modulation of mitochondrial calcium and inhibition of the PTP is a promising target for cardioprotection and prevention of cardiomyocyte death. The mitochondrial calcium uniporter (MCU) complex mediates rapid mitochondrial calcium uptake. MICU3 is a regulator of the MCU complex and has been shown to be a highly potent stimulator of MCU-dependent calcium uptake in neuronal cells. We found that MICU3 is expressed in hearts and we therefore investigated the role of MICU3 in the heart. We examined the role of MICU3 in the development of hypertrophy and in a separate study we examined the response to ischemic-reperfusion (I/R) injury. Given its role in regulating mitochondrial calcium uptake, we hypothesized that loss of MICU3 confers protection against cardiac injury. Methods: Mice with global deletion of Micu3 (Micu3 -/- ) were created utilizing CRISPR-Cas9 technology. Adult knockout and littermate wild type mice were treated with Isoproterenol (15mg/kg/day) for two weeks to induce hypertrophy. Echocardiograms were performed at baseline and after treatment to assess changes in left ventricular size and function. I/R injury was studied using Langendorff ex vivo perfused heart system, exposing knockout and wild type hearts to 20 minutes of ischemia and 90 minutes of reperfusion. Hemodynamic data and infarct size were collected and compared. Student t-test and 2-way ANOVA were used for statistical analysis. Result: Micu3 -/- mice had normal cardiac function at baseline. There was no sex difference in cardiac function. Micu3 -/- mice continued to show normal function after 2 weeks of treatment with Isoproterenol, whereas wild type mice exhibited depressed function (median FS 35% vs. 24% p = 0.0001, EF 64% vs. 50% p = 0.0001). Wild type mice developed LV dilation from baseline (median 4.15mm vs. 4.57mm, p = 0.0014), whereas LV dimension remained stable in Micu3 -/- mice (median 4.12mm vs. 4.18mm, p= 0.9892). Micu3 - /- mice were also protected from I/R injury. Compared to wild types, Micu3 -/- hearts demonstrated less contractile dysfunction at end reperfusion (median rate pressure product 62% vs. 41%, p = 0.002), and significantly smaller infarct size (median 33% vs. 53%, p = 0.0001). Conclusion: Loss of MICU3 confers cardioprotection against ischemic reperfusion injury and Isoproterenol induced cardiac dysfunction.


1985 ◽  
Vol 249 (3) ◽  
pp. C297-C303 ◽  
Author(s):  
M. E. Bromberg ◽  
R. W. Sevy ◽  
J. L. Daniel ◽  
L. Salganicoff

The relationship between tension and myosin 20,000-Da light chain phosphorylation in intact nonmuscle cells was investigated using a preparation of thrombin-activated, irreversibly aggregated platelets known as the platelet strip. Steady-state levels of tension generated by the platelet strip were found to be linearly related to the level of myosin phosphorylation. This relationship was observed during dose-dependent relaxation induced by the adenylate cyclase activators prostaglandin (PG) E1 and PGI2, and during contraction induced by ADP, epinephrine, and the prostaglandin endoperoxide analogue U-46619, which did not appreciably alter the basal level of adenosine 3',5'-cyclic monophosphate in the preparation. The fully relaxed platelet strip, in the absence of external Ca2+, was associated with a level of 12% light chain phosphorylation, which increased to 72% on maximal contraction. During both relaxation and contraction, changes in myosin phosphorylation were also found to precede or coincide with tension changes. Furthermore, steady-state contraction induced by ADP was associated with a maintained elevation in the level of myosin phosphorylation. These results support the concept that myosin phosphorylation is an important regulatory mechanism for contractility in platelets.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49243 ◽  
Author(s):  
Andreas Mades ◽  
Katherina Gotthardt ◽  
Karin Awe ◽  
Jens Stieler ◽  
Tatjana Döring ◽  
...  

2000 ◽  
Vol 279 (6) ◽  
pp. H2694-H2703 ◽  
Author(s):  
Yoshiya Toyoda ◽  
Ingeborg Friehs ◽  
Robert A. Parker ◽  
Sidney Levitsky ◽  
James D. McCully

Adenosine-enhanced ischemic preconditioning (APC) extends the protection afforded by ischemic preconditioning (IPC) by both significantly decreasing infarct size and significantly enhancing postischemic functional recovery. The purpose of this study was to determine whether APC is modulated by ATP-sensitive potassium (KATP) channels and to determine whether this modulation occurs before ischemia or during reperfusion. The role of KATP channels before ischemia (I), during reperfusion (R), or during ischemia and reperfusion (IR) was investigated using the nonspecific KATP blocker glibenclamide (Glb), the mitochondrial (mito) KATP channel blocker 5-hydroxydecanoate (5-HD), and the sarcolemmal (sarc) KATPchannel blocker HMR-1883 (HMR). Infarct size was significantly increased ( P < 0.05) in APC hearts with Glb-I, Glb-R, and 5-HD-I treatment and partially with 5-HD-R. Glb-I and Glb-R treatment significantly decreased APC functional recovery ( P < 0.05 vs. APC), whereas 5-HD-I and 5-HD-R had no effect on APC functional recovery. HMR-IR significantly decreased postischemic functional recovery ( P < 0.05 vs. APC) but had no effect on infarct size. These data indicate that APC infarct size reduction is modulated by mitoKATP channels primarily during ischemia and suggest that functional recovery is modulated by sarcKATP channels during ischemia and reperfusion.


Sign in / Sign up

Export Citation Format

Share Document