scholarly journals Role of Human Sec63 in Modulating the Steady-State Levels of Multi-Spanning Membrane Proteins

PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e49243 ◽  
Author(s):  
Andreas Mades ◽  
Katherina Gotthardt ◽  
Karin Awe ◽  
Jens Stieler ◽  
Tatjana Döring ◽  
...  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Lin Song ◽  
Lijuan Cao ◽  
Rui Liu ◽  
Hui Ma ◽  
Yanan Li ◽  
...  

AbstractGlucocorticoids (GC) are widely used clinically, despite the presence of significant side effects, including glucocorticoid-induced osteoporosis (GIOP). While GC are believed to act directly on osteoblasts and osteoclasts to promote osteoporosis, the detailed underlying molecular mechanism of GC-induced osteoporosis is still not fully elucidated. Here, we show that lymphocytes play a pivotal role in regulating GC-induced osteoporosis. We show that GIOP could not be induced in SCID mice that lack T cells, but it could be re-established by adoptive transfer of splenic T cells from wild-type mice. As expected, T cells in the periphery are greatly reduced by GC; instead, they accumulate in the bone marrow where they are protected from GC-induced apoptosis. These bone marrow T cells in GC-treated mice express high steady-state levels of NF-κB receptor activator ligand (RANKL), which promotes the formation and maturation of osteoclasts and induces osteoporosis. Taken together, these findings reveal a critical role for T cells in GIOP.


1985 ◽  
Vol 249 (3) ◽  
pp. C297-C303 ◽  
Author(s):  
M. E. Bromberg ◽  
R. W. Sevy ◽  
J. L. Daniel ◽  
L. Salganicoff

The relationship between tension and myosin 20,000-Da light chain phosphorylation in intact nonmuscle cells was investigated using a preparation of thrombin-activated, irreversibly aggregated platelets known as the platelet strip. Steady-state levels of tension generated by the platelet strip were found to be linearly related to the level of myosin phosphorylation. This relationship was observed during dose-dependent relaxation induced by the adenylate cyclase activators prostaglandin (PG) E1 and PGI2, and during contraction induced by ADP, epinephrine, and the prostaglandin endoperoxide analogue U-46619, which did not appreciably alter the basal level of adenosine 3',5'-cyclic monophosphate in the preparation. The fully relaxed platelet strip, in the absence of external Ca2+, was associated with a level of 12% light chain phosphorylation, which increased to 72% on maximal contraction. During both relaxation and contraction, changes in myosin phosphorylation were also found to precede or coincide with tension changes. Furthermore, steady-state contraction induced by ADP was associated with a maintained elevation in the level of myosin phosphorylation. These results support the concept that myosin phosphorylation is an important regulatory mechanism for contractility in platelets.


1988 ◽  
Vol 8 (9) ◽  
pp. 3777-3783 ◽  
Author(s):  
N Nakayama ◽  
Y Kaziro ◽  
K Arai ◽  
K Matsumoto

The ste mutants (ste2, ste4, ste5, ste7, ste11, and ste12) are insensitive to mating factors and are, therefore, sterile. Roles of the STE gene products in the GPA1-mediated mating factor signaling pathway were studied by using ste gpa1 double mutants. Mating efficiency of a ste2 mutant defective in the alpha-factor receptor increased 1,000-fold in a gpa1 background, while G1 arrest and aberrant morphology (shmoo) caused by gpa1 were not suppressed by ste2. Furthermore, the steady-state level of the FUS1 transcript, which normally increases in response to mating factors, was also elevated when the GPA1 function was impaired. These results suggest that the GPA1 protein functions downstream of the STE2 receptor. Conversely, the sterility of ste4, ste5, ste7, ste11, and ste12 mutants was not suppressed by gpa1, but the lethal phenotype of gpa1 was suppressed by these ste mutations. Northern (RNA) blotting analysis revealed that the ste7, ste11, and ste12 mutations caused reductions of 50 to 70% in the steady-state levels of the GPA1 transcript, while ste4 had a slight effect and ste5 had no effect. This implies that the suppression by ste7, ste11, and ste12 could be due to reduced syntheses of additional components, including an effector, and that suppression by ste4 and ste5 may result from direct effects on the signaling pathway. The STE4, STE5, STE7, STE11, and STE12 products, therefore, appear to specify components of the signal transduction machinery, directly or indirectly, which function together with or downstream of GPA1.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1124
Author(s):  
Anne Beziau ◽  
Denys Brand ◽  
Eric Piver

Phosphoinositides account for only a small proportion of cellular phospholipids, but have long been known to play an important role in diverse cellular processes, such as cell signaling, the establishment of organelle identity, and the regulation of cytoskeleton and membrane dynamics. As expected, given their pleiotropic regulatory functions, they have key functions in viral replication. The spatial restriction and steady-state levels of each phosphoinositide depend primarily on the concerted action of specific phosphoinositide kinases and phosphatases. This review focuses on a number of remarkable examples of viral strategies involving phosphoinositide kinases to ensure effective viral replication.


2003 ◽  
Vol 285 (2) ◽  
pp. H866-H874 ◽  
Author(s):  
Craig R. Hampton ◽  
Akira Shimamoto ◽  
Christine L. Rothnie ◽  
Jeaneatte Griscavage-Ennis ◽  
Albert Chong ◽  
...  

We investigated the role of inducible heat shock proteins 70.1 and 70.3 (HSP70.1 and HSP70.3, respectively) in myocardial ischemic preconditioning (IP) in mice. Wild-type (WT) mice and HSP70.1- and HSP70.3-null [HSP70.1/3(–/–)] mice were subjected to IP and examined 24 h later during the late phase of protection. IP significantly increased steady-state levels of HSP70.1 and HSP70.3 mRNA and expression of inducible HSP70 protein in WT myocardium. To assess protection against tissue injury, mice were subjected to 30 min of regional ischemia and 3 h of reperfusion. In WT mice, IP reduced infarct size by 43% compared with sham IP-treated mice. In contrast, IP did not reduce infarct size in HSP70.1/3(–/–) mice. Absence of inducible HSP70.1 and HSP70.3 had no effect, however, on classical or early-phase protection produced by IP, which significantly reduced infarct size in HSP70.1/3(–/–) mice. We conclude that inducible HSP70.1 and HSP70.3 are required for late-phase protection against infarction following IP in mice.


1995 ◽  
Vol 268 (2) ◽  
pp. L294-L301 ◽  
Author(s):  
J. Wilborn ◽  
D. L. DeWitt ◽  
M. Peters-Golden

Prostaglandin synthesis represents one means by which macrophages modulate inflammation. The initial enzyme in the metabolism of arachidonic acid to prostaglandins is cyclooxygenase (COX). Both constitutive (COX-1) and inducible (COX-2) isoforms are recognized. We previously showed that COX activity of rat peritoneal macrophages (PM) exceeds that of alveolar macrophages (AM). In this study, we correlated the steady-state levels of COX-1 and COX-2 proteins with COX activity in resident AM and PM. Freshly obtained AM contained lower levels of COX-1 than did fresh PM. Neither contained substantial amounts of COX-2 in the basal state, but both cell types demonstrated induction when cultured with lipopolysaccharide; once again, COX-2 levels in PM exceeded those in AM. Despite COX-2 induction under these circumstances, its contribution to prostaglandin production appeared to be modest. We conclude that, although both isoforms of COX are expressed in rat AM and PM, COX-1 is responsible for the majority of enzyme activity in both the basal and stimulated states. The lesser prostaglandin synthetic capacity of AM than of PM appears to be the consequence of lower steady-state levels of both COX proteins.


1967 ◽  
Vol 50 (4) ◽  
pp. 781-792 ◽  
Author(s):  
Gene A. Morrill ◽  
Elliott Robbins

Studies on HeLa cells in spinner culture at pH 7.0 and 37° have shown that [Na]i decreased and [K]i increased with increasing [Ca]o. In Na-free (choline) medium [K]i remained high whether or not Ca was present in the medium. [Na]i and [K]i approached a new steady state within 1 min after transfer to Ca-free medium and returned to the initial values within 15 min upon readdition of Ca. 40% of the cell Ca exchanged within 1 min followed by a slow exchange of the remaining Ca over several hours. [Ca]i increased with decreasing [Na]o but was independent of [K]o. Equimolar Mg did not substitute for Ca in maintaining low [Na]i and high [K]i. Under steady-state conditions about 50% of the cell Na exchanged in accordance with a single rate constant. The initial Na influx was 270, 100, and 2.5 µM/liter of cell water/sec for 0, 0.10, and 1.0 mM [Ca]o, respectively. When Na transport was inhibited with strophanthidin and [Na]i and [K]i allowed to reach a steady state, Na influx was more rapid for cells incubated in Ca-free medium than for cells incubated in medium containing 1.0 mM Ca. These results suggest that Ca competes with Na at the cell membrane and thus controls the passive diffusion of Na into the cell.


Sign in / Sign up

Export Citation Format

Share Document