scholarly journals Hypoxic conditioning in blood vessels and smooth muscle tissues: effects on function, mechanisms, and unknowns

2018 ◽  
Vol 315 (4) ◽  
pp. H756-H770 ◽  
Author(s):  
Asmaa M. Almohanna ◽  
Susan Wray

Hypoxic preconditioning, the protective effect of brief, intermittent hypoxic or ischemic episodes on subsequent more severe hypoxic episodes, has been known for 30 yr from studies on cardiac muscle. The concept of hypoxic preconditioning has expanded; excitingly, organs beyond the heart, including the brain, liver, and kidney, also benefit. Preconditioning of vascular and visceral smooth muscles has received less attention despite their obvious importance to health. In addition, there has been no attempt to synthesize the literature in this field. Therefore, in addition to overviewing the current understanding of hypoxic conditioning, in the present review, we consider the role of blood vessels in conditioning and explore evidence for conditioning in other smooth muscles. Where possible, we have distinguished effects on myocytes from other cell types in the visceral organs. We found evidence of a pivotal role for blood vessels in conditioning and for conditioning in other smooth muscle, including the bladder, vascular myocytes, and gastrointestinal tract, and a novel response in the uterus of a hypoxic-induced force increase, which helps maintain contractions during labor. To date, however, there are insufficient data to provide a comprehensive or unifying mechanism for smooth muscles or visceral organs and the effects of conditioning on their function. This also means that no firm conclusions can be drawn as to how differences between smooth muscles in metabolic and contractile activity may contribute to conditioning. Therefore, we have suggested what may be general mechanisms of conditioning occurring in all smooth muscles and tabulated tissue-specific mechanistic findings and suggested ideas for further progress.

Folia Medica ◽  
2019 ◽  
Vol 61 (3) ◽  
pp. 411-418 ◽  
Author(s):  
Xenodochidis A. Charilaos ◽  
Raina G. Ardasheva ◽  
Veselin G. Popov ◽  
Natalia A. Prissadova ◽  
Valentin I. Turiyski ◽  
...  

Background: Besides its “classical” neurotransmitter function in the central and peripheral nervous systems, serotonin, or 5-hydroxytryptamine (5-HT) is also a local hormone in a number of tissues, including those of the GI tract. Radiation is known to be able to disrupt certain functions of the tract, modulated by 5-HT-signaling pathways, or the serotonin receptors themselves. Aim: The present investigation focused on clarifying the nature and extent of influence of an accelerated electron beam with energy of 9 MeV on the serotonergic mediation of healthy smooth muscle gastric tissue of rats following total body irradiation of the animals. Materials and methods: The study involved a control group and two experimental groups of animals exposed to 1 and 5 Gy, respectively, using Siemens Primus S/N 3561. Circular smooth muscle tissues were isolated from rats 1 hour and 18 hours after they were exposed to 1 and 5 Gy and also 5 days after irradiation from the rats that received a dose of 5 Gy in order to investigate the action of exogenous serotonin at increasing concentrations from 10-8 to 10-4 mol/l. The contractile reactivity of each group SM preparations was registered isometrically. Results: Electron beams with energy of 9 MeV did not damage the contractile apparatus of gastric SM of rats and had a stimulating effect on contractility resulting from rapidly developing processes (1 hour) or later occurring once (5 days). Conclusions: Difference was observed in the importance of the factors of received dose, lapse of time from irradiation to investigation of SM tissues, and exogenous 5-HT concentration for the changes in SM reactivity in serotonin-induced tonic and phasic responses.


2019 ◽  
Vol 13 ◽  
pp. 117906951882191 ◽  
Author(s):  
Rohit Manchanda ◽  
Shailesh Appukuttan ◽  
Mithun Padmakumar

As in other excitable tissues, two classes of electrical signals are of fundamental importance to the functioning of smooth muscles: junction potentials, which arise from neurotransmission and represent the initiation of excitation (or in some instances inhibition) of the tissue, and spikes or action potentials, which represent the accomplishment of excitation and lead on to contractile activity. Unlike the case in skeletal muscle and in neurons, junction potentials and spikes in smooth muscle have been poorly understood in relation to the electrical properties of the tissue and in terms of their spatiotemporal spread within it. This owes principally to the experimental difficulties involved in making precise electrical recordings from smooth muscles and also to two inherent features of this class of muscle, ie, the syncytial organization of its cells and the distributed innervation they receive, which renders their biophysical analysis problematic. In this review, we outline the development of hypotheses and knowledge on junction potentials and spikes in syncytial smooth muscle, showing how our concepts have frequently undergone radical changes and how recent developments hold promise in unraveling some of the many puzzles that remain. We focus especially on computational models and signal analysis approaches. We take as illustrative examples the smooth muscles of two organs with distinct functional characteristics, the vas deferens and urinary bladder, while also touching on features of electrical functioning in the smooth muscles of other organs.


1987 ◽  
Vol 65 (4) ◽  
pp. 729-745 ◽  
Author(s):  
B. M. Altura ◽  
B. T. Altura ◽  
A. Carella ◽  
A. Gebrewold ◽  
T. Murakawa ◽  
...  

Contractility of all types of invertebrate and vertebrate muscle is dependent upon the actions and interactions of two divalent cations, viz., calcium (Ca2+) and magnesium (Mg2+) ions. The data presented and reviewed herein contrast the actions of several organic Ca2+ channel blockers with the natural, physiologic (inorganic) Ca2+ antagonist, Mg2+, on microvascular and macrovascular smooth muscles. Both direct in vivo studies on microscopic arteriolar and venular smooth muscles and in vitro studies on different types of blood vessels are presented. It is clear from the studies done so far that of all Ca2+ antagonists examined, only Mg2+ has the capability to inhibit myogenic, basal, and hormonal-induced vascular tone in all types of vascular smooth muscle. Data obtained with verapamil, nimopidine, nitrendipine, and nisoldipine on the microvasculature are suggestive of the probability that a heterogeneity of Ca2+ channels, and of Ca2+ binding sites, exists in different microvascular smooth muscles; although some appear to be voltage operated and others, receptor operated, they are probably heterogeneous in composition from one vascular region to another. Mg2+ appears to act on voltage-, receptor-, and leak-operated membrane channels in vascular smooth muscle. The organic Ca2+ channel blockers do not have this uniform capability; they demonstrate a selectivity when compared with Mg2+. Mg2+ appears to be a special kind of Ca2+ channel antagonist in vascular smooth muscle. At vascular membranes it can (i) block Ca2+ entry and exit, (ii) lower peripheral and cerebral vascular resistance, (iii) relieve cerebral, coronary, and peripheral vasospasm, and (iv) lower arterial blood pressure. At micromolar concentrations (i.e., 10–100 μM), Mg2+ can cause significant vasodilatation of intact arterioles and venules in all regional vasculatures so far examined. Although Mg2+ is three to five orders of magnitude less potent than the organic Ca2+ channel blockers, it possesses unique and potentially useful Ca2+ antagonistic properties.


1996 ◽  
Vol 74 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Jian-Ping Jin ◽  
Michael P. Walsh ◽  
Mary E. Resek ◽  
Gail A. McMartin

Calponin is a thin filament associated protein found in smooth muscle as a potential modulator of contraction. Five mouse monoclonal antibodies (mAbs CP1, CP3, CP4, CP7, and CP8) were prepared against chicken gizzard α-calponin. The CP1 epitopic structure is conserved in smooth muscles across vertebrate phyla and is highly sensitive to CNBr cleavage in contrast with the chicken-specific CP4 and the avian–mammalian-specific CP8 epitopes that are resistant to CNBr fragmentation. Using this panel of mAbs against multiple epitopes, only α-calponin was detected in adult chicken smooth muscles and throughout development of the gizzard. Western blotting showed that the calponin content varied among different smooth muscle tissues and correlated with that of h-caldesmon. In contrast with the constitutive expression of calponin in phasic smooth muscle of the digestive tract, very low levels of calponin were detected in adult avian tracheas and no calponin expression was detected in embryonic and young chick tracheas. These results provide information on the structural conservation of calponins and suggest a relationship between calponin expression and smooth muscle functional states.Key words: smooth muscle calponin, caldesmon, expression, development, chicken trachea.


1978 ◽  
Vol 55 (s4) ◽  
pp. 31s-36s ◽  
Author(s):  
Stan Greenberg ◽  
Eugene C. Palmer ◽  
Walter M. Wilborn

1. Portal veins, vena cavae and pulmonary arteries from spontaneously hypertensive (SH) rats were found to undergo medial smooth-muscle hypertrophy when compared with corresponding blood vessels from age- and sex-matched Wister—Kyoto (WKy) normotensive rats. There was an increase in the density of the mucopolysaccharide and glycoprotein staining in veins, pulmonary arteries vena venorum and ventricular myocardium of SH rats. 2. Electron-microscopic examination of the blood vessels and myocardium of SH rats suggested enhanced protein synthesis and hypertrophy both in the smooth muscle and endothelial cells. Central venous, portal venous and right ventricular pressures were measured in SH rats and were not elevated when compared with corresponding values for WKy rats. Veins and pulmonary arteries from SH rats developed more tension when challenged with vasoconstrictor stimuli than corresponding vessels obtained from WKy rats. 3. Veins and pulmonary arteries obtained from SH rats demonstrated a greater uptake of [14C]glycosamine than corresponding blood vessels from WKy rats. 4. These findings demonstrate the existence of pressure-independent hypertrophy of smooth muscle in blood vessels obtained from SH rats, associated with an increase in glycoprotein synthesis and an enhanced contractile activity of the muscle. The data suggest that the enhanced contractility of blood vessels from SH rats reflects the enhanced muscle mass. It may represent an aberrant humoral or cellular mechanism which results in the hypertension.


2021 ◽  
Vol 12 ◽  
Author(s):  
Susan Wray ◽  
Clodagh Prendergast ◽  
Sarah Arrowsmith

In smooth muscle tissues, calcium-activated chloride channels (CaCC) provide the major anionic channel. Opening of these channels leads to chloride efflux and depolarization of the myocyte membrane. In this way, activation of the channels by a rise of intracellular [Ca2+], from a variety of sources, produces increased excitability and can initiate action potentials and contraction or increased tone. We now have a good mechanistic understanding of how the channels are activated and regulated, due to identification of TMEM16A (ANO1) as the molecular entity of the channel, but key questions remain. In reviewing these channels and comparing two distinct smooth muscles, myometrial and vascular, we expose the differences that occur in their activation mechanisms, properties, and control. We find that the myometrium only expresses “classical,” Ca2+-activated, and voltage sensitive channels, whereas both tonic and phasic blood vessels express classical, and non-classical, cGMP-regulated CaCC, which are voltage insensitive. This translates to more complex activation and regulation in vascular smooth muscles, irrespective of whether they are tonic or phasic. We therefore tentatively conclude that although these channels are expressed and functionally important in all smooth muscles, they are probably not part of the mechanisms governing phasic activity. Recent knockdown studies have produced unexpected functional results, e.g. no effects on labour and delivery, and tone increasing in some but decreasing in other vascular beds, strongly suggesting that there is still much to be explored concerning CaCC in smooth muscle.


Author(s):  
P. Virych ◽  
O. Shelyuk ◽  
V. Martynyuk ◽  
V. Pavlovsky

The effect of compounds based on 3-substituted-1,4-benzodiazepine-2-ones on contractile activity of smooth muscles of the rat's stomach was analyzed. Action substances MX-1626, MX-1775 for the smooth muscle contraction of like competitive inhibitor of bradykinin – des-Arg9- [Leu8]-Bradykinin acetate, which is observed as increase normalized rate of contraction with increasing of bradykinin concentration and characterized by a slowdown in the first phase of contraction. The most effective 3-subtituted 1,4-benzodiazepin-2-ones was at low concentrations of bradykinin, increasing it concentration their effect is reduced.


2009 ◽  
Vol 8 (4) ◽  
pp. 41-46
Author(s):  
I. V. Kovalyev ◽  
S. V. Gusakova ◽  
O. S. Melnik ◽  
M. B. Baskakov ◽  
L. V. Kapilevich ◽  
...  

The influence of of hydrogen peroxide on the contractile reactions of smooth muscle cells caused by hyperpotassium solution end phenylephrine in modulation a potassium conductance the membrane and the state of cytoskeleton elements has been investigated by the mechanographical method. It has multidirectional influence of hydrogen peroxide in the reduction of smooth muscles of rat aorta with the membrane depolarization hyperpotassium solution and action phenylephrine: phenylephrine decline in value and increase strength hyperpotassium contractures. We show that the cytoskeleton components involved in the mechanisms of action of hydrogen peroxide in the contractile reactions of smooth muscles of rat aorta caused by phenylephrine.


2015 ◽  
Vol 10 (4) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Natalia Prissadova ◽  
Petko Bozov ◽  
Kiril Marinkov ◽  
Hristo Badakov ◽  
Atanas Kristev

Ursolic acid (UA) in concentrations of 1×10−7 mol/L - 5×10−5 mol/L induced relaxation in gastric smooth muscle (SM) tissues, in a concentration-dependent manner. The relaxation did not change membrane potential and slow wave contraction patterns. A significant decrease in amplitude and frequency of spike-potentials was observed. UA-induced reactivity was removed when SM preparations were treated with nifedipine (1×10−6 mol/L). Ca2+- induced contractions of the depolarized SM preparations (42 mmol/L K+; Ca2+- free Krebs solution) were substantially reduced in the presence of UA. It was determined that, in certain concentrations, UA influenced L – type Ca2+ channels, and reduced the Ca2+ influx.


2003 ◽  
Vol 284 (3) ◽  
pp. C583-C595 ◽  
Author(s):  
Gregory C. Amberg ◽  
Sang Don Koh ◽  
Yuji Imaizumi ◽  
Susumu Ohya ◽  
Kenton M. Sanders

A-type currents are voltage-gated, calcium-independent potassium (Kv) currents that undergo rapid activation and inactivation. Commonly associated with neuronal and cardiac cell-types, A-type currents have also been identified and characterized in vascular, genitourinary, and gastrointestinal smooth muscle cells. This review examines the molecular identity, biophysical properties, pharmacology, regulation, and physiological function of smooth muscle A-type currents. In general, this review is intended to facilitate the comparison of A-type currents present in different smooth muscles by providing a comprehensive report of the literature to date. This approach should also aid in the identification of areas of research requiring further attention.


Sign in / Sign up

Export Citation Format

Share Document