The α-linolenic acid content of flaxseed can prevent the atherogenic effects of dietary trans fat

2011 ◽  
Vol 301 (6) ◽  
pp. H2220-H2226 ◽  
Author(s):  
Chantal M. C. Bassett ◽  
Richelle S. McCullough ◽  
Andrea L. Edel ◽  
Amanda Patenaude ◽  
Renee K. LaVallee ◽  
...  

Dietary intake of industrially hydrogenated trans fatty acids (TFA) has been associated with coronary heart disease. Dietary flaxseed can inhibit atherosclerosis induced by dietary cholesterol. The aim of this study was to determine whether supplementing the diet with flaxseed could protect against atherosclerosis induced by a diet enriched in TFA. Low-density lipoprotein receptor-deficient (LDLr−/−) mice were fed 1 of 14 experimental diets for 14 wk containing one of two fat sources [regular (pork/soy) or trans fat] at two concentrations (4 or 8%) and supplemented with or without dietary cholesterol (2%), whole ground flaxseed, or one of the components of flaxseed [α-linolenic acid (ALA), defatted fiber, or lignan]. Adding flaxseed to the diet partially mitigated the rise in circulating cholesterol levels induced by the cholesterol-enriched diet. Atherosclerosis was stimulated by TFA and/or cholesterol. Including milled flaxseed to an atherogenic diet significantly reduced atherosclerosis compared with the groups that consumed cholesterol and/or TFA. ALA was the only component within flaxseed that could inhibit the atherogenic action of cholesterol and/or TFA on its own. Dietary flaxseed protects against atherosclerotic development induced by TFA and cholesterol feeding through its content of ALA.

Physiology ◽  
1999 ◽  
Vol 14 (1) ◽  
pp. 24-29 ◽  
Author(s):  
Alan F. Hofmann

Bile acids, amphipathic end products of cholesterol metabolism, are “good” in the infant because they enhance lipid absorption and thereby promote growth. Bile acids also induce bile flow and biliary lipid secretion. The enterohepatic circulation of bile acids is “bad” in the adult because it downregulates hepatocyte low-density lipoprotein receptor activity and thereby elevates plasma cholesterol levels. Defects in bile acid metabolism such as impaired biosynthesis or transport are “ugly” because they cause morbidity and death. New approaches for treating these defects are being developed.


2020 ◽  
Author(s):  
Roxane St-Amand ◽  
Emilienne T. Ngo Sock ◽  
Samantha Quinn ◽  
Jean-Marc Lavoie ◽  
David H. St-Pierre

Abstract Background: The present study was designed to test the hypothesis that in the liver, excessive fat accumulation impairs cholesterol metabolism mainly by altering the low-density lipoprotein-receptor (LDL-R) pathway. Method: Young male Wistar rats were fed standard (SD), high fat (HFD; 60% kcal) or Western (WD; 40% fat + 35% sucrose (17.5% fructose)) diets for 2 or 6 weeks. Results: Weight gain (~ 40g) was observed only following 6 weeks of the obesogenic diets (P < 0.01). Compared to the 2-week treatment, obesogenic diets tripled fat pad weight (~ 20 vs 7 g) after 6 weeks. Hepatic triglyceride (TG) levels were greater in response to both the WD and HFD compared to the SD (P < 0.01) at 2 and 6 weeks and their concentrations were greater (P < 0.05) in WD than HFD at 2 weeks. Plasma total cholesterol levels were higher (P < 0.05) in animals submitted to WD. After 2 and 6 weeks, liver expression of LDL-R, proprotein convertase subtilisin/kexin 9 (PCSKk9) and sterol regulatory element binding protein 2 (SREBP2), involved in LDL-cholesterol uptake, was lower in animals submitted to WD than in others treated with HFD or SD (P < 0.01). Similarly, low-density lipoprotein-receptor-related protein 1 (LRP1) and acyl-CoA cholesterol acyltransferase-2 (ACAT-2) mRNA levels were lower (P < 0.01) among WD compared to SD-fed rats. Expression of the gene coding the main regulator of endogenous cholesterol synthesis, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoAR) was reduced in response to WD compared to SD and HFD at 2 (P < 0.001) and 6 (P < 0.05) weeks. Being enriched in fructose, the WD strongly promoted the expression of carbohydrate-response element binding protein (ChREBP) and acetyl-CoA carboxylase (ACC), two key regulators of de novo lipogenesis. Conclusion: These results show that the WD promptly increased TG levels in the liver by potentiating fat storage. This impaired the pathway of hepatic cholesterol uptake via the LDL-R axis, promoting a rapid increase in plasma total cholesterol levels. These results indicate that liver fat content is a factor involved in the regulation of plasma cholesterol.


2005 ◽  
Vol 75 (3) ◽  
pp. 211-217 ◽  
Author(s):  
Schlegelmilch ◽  
Brandsch ◽  
Stangl ◽  
Eder

Two experiments were conducted to determine whether molasses might exert effects on serum lipoproteins. In experiment 1, 24 rats were divided into two groups and fed diets containing liquid molasses from sugar beet or sucrose (7.71 g of molasses dry matter or sucrose per kg of diet). The second experiment included four groups of rats (n = 12/group) and was conducted in a bifactorial design, with the factors being molasses (non-supplementation vs. supplementation of 77.1 g of molasses dry matter per kg of diet at the expense of sucrose) and dietary cholesterol (0 vs. 5 g/kg diet). In experiment 1, the ratio of low-density lipoprotein (LDL) to high-density lipoprotein (HDL) cholesterol concentration tended to be lower in rats fed the molasses diet than in rats fed the control diet (p < 0.15). In experiment 2, rats fed the molasses diet had higher concentrations of HDL cholesterol (+ 26%) than control rats fed diets without molasses (p < 0.05). This effect was independent of the dietary cholesterol concentration. Concentrations of cholesterol in LDL, very low-density lipoprotein (VLDL), and liver as well as concentrations of triacylglycerols in plasma and liver remained unaffected by molasses in both experiments. In conclusion, the results of this study suggest that supplementation of molasses is effective at raising HDL cholesterol levels in rats.


2012 ◽  
Vol 302 (11) ◽  
pp. L1200-L1208 ◽  
Author(s):  
Monica Goldklang ◽  
Polina Golovatch ◽  
Tina Zelonina ◽  
Jordis Trischler ◽  
Daniel Rabinowitz ◽  
...  

Smokers with airflow obstruction have an increased risk of atherosclerosis, but the relationship between the pathogenesis of these diseases is not well understood. To determine whether hypercholesterolemia alters lung inflammation and emphysema formation, we examined the lung phenotype of two hypercholesterolemic murine models of atherosclerosis at baseline and on a high-fat diet. Airspace enlargement developed in the lungs of apolipoprotein E-deficient (Apoe −/− ) mice exposed to a Western-type diet for 10 wk. An elevated number of macrophages and lymphocytes accompanied by an increase in matrix metalloproteinase-9 (MMP-9) activity and MMP-12 expression was observed in the lungs of Apoe −/− mice on a Western-type diet. In contrast, low-density lipoprotein receptor-deficient ( Ldlr −/−) mice did not exhibit lung destruction or inflammatory changes. Most importantly, we revealed augmented expression of the downstream targets of the Toll-like receptor (TLR) pathway, interleukin-1 receptor-associated kinase 1, and granulocyte colony-stimulating factor, in the lungs of Apoe −/− mice fed with a Western-type diet. In addition, we demonstrated overexpression of MMP-9 in Apoe −/− macrophages treated with TLR4 ligand, augmented with the addition of oxidized LDL, suggesting that emphysema in these mice results from the activation of the TLR pathway secondary to known abnormal cholesterol efflux. Our findings indicate that, in Apoe −/− mice fed with an atherogenic diet, abnormal cholesterol efflux leads to increased systemic inflammation with subsequent lung damage and emphysema formation.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 408
Author(s):  
Jin-Taek Hwang ◽  
Eunji Choi ◽  
Hyo-Kyoung Choi ◽  
Jae-Ho Park ◽  
Min-Yu Chung

The objective of the present study was to investigate the mechanism by which capsella bursa-pastoris ethanol extract (CBE), containing 17.5 milligrams of icaritin per kilogram of the extract, and icaritin, mediate hypocholesterolemic activity via the low-density lipoprotein receptor (LDLR) and pro-protein convertase subtilisin/kexin type 9 (PCSK9) in obese mice and HepG2 cells. CBE significantly attenuated serum total and LDL cholesterol levels in obese mice, which was associated with significantly decreased PCSK9 gene expression. HepG2 cells were cultured using delipidated serum (DLPS), and CBE significantly reduced PCSK9 and maintained the LDLR level. CBE co-treatment with rosuvastatin attenuated statin-mediated PCSK9 expression, and further increased LDLR. The icaritin contained in CBE decreased intracellular PCSK9 and LDLR levels by suppressing transcription factors SREBP2 and HNF-1α. Icaritin also significantly suppressed the extracellular PCSK9 level, which likely contributed to post-translational stabilization of LDLR in the HepG2 cells. PCSK9 inhibition by CBE is actively attributed to icaritin, and the use of CBE and icaritin could be an alternative therapeutic approach in the treatment of hypercholesterolemia.


Sign in / Sign up

Export Citation Format

Share Document