Aging exacerbates negative remodeling and impairs endothelial regeneration after balloon injury

2004 ◽  
Vol 287 (6) ◽  
pp. H2850-H2860 ◽  
Author(s):  
Daniele Torella ◽  
Dario Leosco ◽  
Ciro Indolfi ◽  
Antonio Curcio ◽  
Carmela Coppola ◽  
...  

Many older patients, because of their high prevalence of coronary artery disease, are candidates for percutaneous coronary interventions (PCI), but the effects of vascular aging on restenosis after PCI are not yet well understood. Balloon injury to the right carotid artery was performed in adult and old rats. Vascular smooth muscle cell (VSMC) proliferation, apoptotic cell death, together with Akt induction, telomerase activity, p27kip1, and endothelial nitric oxide synthase (eNOS) expression was assessed in isolated arteries. Neointima hyperplasia and vascular remodeling along with endothelial cell regeneration were also measured after balloon injury. Arteries isolated from old rats exhibited a significant reduction of VSMC proliferation and an increase in apoptotic death after balloon injury when compared with adult rats. In the vascular wall of adult rats, balloon dilation induced Akt phosphorylation, and this was barely present in old rats. In arteries from old rats, Akt-modulated cell cycle check points like telomerase activity and p27kip1 expression were decreased and increased, respectively, compared with adults. After balloon injury, old rats showed a significant reduction of neointima formation and an increased vascular negative remodeling compared with adults. These results were coupled by a marked delay in endothelial regeneration in aged rats, partially mediated by a decreased eNOS expression and phosphorylation. Interestingly, chronic administration of l-arginine prevented negative remodeling and improved reendothelialization after balloon injury in aged animals. A decreased neointimal proliferation, an impaired endothelial regeneration, and an increase in vascular remodeling after balloon injury were observed in aged animals. The molecular mechanisms underlying these responses seem to be a reduced Akt and eNOS activity.

2021 ◽  
Vol 12 ◽  
Author(s):  
Feng Wang ◽  
Congrui Sun ◽  
Xiaoshuo Lv ◽  
Mingsheng Sun ◽  
Chaozeng Si ◽  
...  

Objective: Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by thrombofibrotic obstruction of the proximal pulmonary arteries, which result in vascular remodeling of the distal pulmonary artery. While the cellular and molecular mechanisms underlying CTEPH pathogenesis remain incompletely understood, recent evidence implicates vascular remodeling. Here, we identify the molecular mechanisms that contribute to vascular remodeling in CTEPH.Methods: Microarray data (GSE130391) for patients with CTEPH and healthy controls were downloaded from the Gene Expression Omnibus (GEO) and screened for differentially expressed genes (DEGs). DEGs were functionally annotated using Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. A protein–protein interaction (PPI) network was constructed to identify hub genes. Finally, pulmonary artery samples were harvested from patients with CTEPH (n = 10) and from controls (n = 10) and primary vascular smooth muscle cells (VSMCs) were cultured. Effects of the proto-oncogene FOS on VSMC proliferation and migration were assessed using expression and knockdown studies.Results: We detected a total of 292 DEGs, including 151 upregulated and 141 downregulated genes. GO analysis revealed enrichment of DEGs in biological processes of signal transduction, response to lipopolysaccharide, signal transduction, and myeloid dendritic cell differentiation. Molecular function analysis revealed enrichment in tumor necrosis factor (TNF)-activated receptor activity, transcriptional activator activity, and protein homodimerization activity. The expression of TNF-α and its receptor (sTNFR1 and sTNFR2) were significantly higher in CTEPH group, compared with control group. KEGG pathway analysis revealed enrichment in salmonella infection, pathways in cancer, osteoclast differentiation, and cytokine-cytokine receptor interaction. Hub genes in the PPI included FOS, suggesting an important role for this gene in vascular remodeling in CTEPH. Primary VSMCs derived from patients with CTEPH showed increased FOS expression and high proliferation and migration, which was attenuated by FOS inhibition. In control VSMCs, TNF-α treatment increased proliferation and migration, which FOS inhibition likewise attenuated.Conclusion: TNF-α drives CTEPH pathogenesis by promoting VSMC proliferation and migration via increased FOS expression. These results advance our understanding of the molecular mechanisms of vascular remodeling in CTEPH, and may inform the development of new therapeutic targets.


2009 ◽  
Vol 297 (6) ◽  
pp. H2015-H2025 ◽  
Author(s):  
Daniele Torella ◽  
Cosimo Gasparri ◽  
Georgina M. Ellison ◽  
Antonio Curcio ◽  
Angelo Leone ◽  
...  

cAMP inhibits proliferation in most cell types, triggering different and sometimes opposing molecular pathways. p85α (phosphatidylinositol 3-kinase regulatory subunit) is phosphorylated by cAMP/PKA in certain cell lineages, but its effects on vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) are unknown. In the present study, we evaluated 1) the role of p85α in the integration of cAMP/PKA-dependent signaling on the regulation of VSMC and EC growth in vitro; and 2) the effects of PKA-modified p85α on neointimal hyperplasia and endothelial healing after balloon injury in vivo. Plasmid constructs carrying wild-type and PKA-modified p85α were employed in VSMCs and ECs in vitro and after balloon injury in rat carotid arteries in vivo. cAMP/PKA reduced VSMC proliferation through p85α phosphorylation. Transfected PKA-activated p85α binds p21ras, reducing ERK1/2 activation and VSMC proliferation in vitro. In contrast, EC proliferation inhibition by cAMP is independent from PKA modification of p85α and ERK1/2 inhibition; indeed, PKA-activated p85α did not inhibit per se ERK1/2 activation and proliferation in ECs in vitro. Interestingly, cAMP reduced both VSMC and EC apoptotic death through p85α phosphorylation. Accordingly, PKA-activated p85α triggered Akt activation, reducing both VSMC and EC apoptosis in vitro. Finally, compared with controls, vascular gene transfer of PKA-activated p85α significantly reduced neointimal formation after balloon injury in rats, without inhibiting endothelial regeneration of the injured arterial segment. In conclusions, PKA-activated p85α integrates cAMP/PKA signaling differently in VSMCs and ECs. By reducing neointimal hyperplasia without inhibiting endothelial regeneration, it exerts a protective effect against restenosis after balloon injury.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Marta Martín-Bórnez ◽  
Javier Ávila-Medina ◽  
Eva Calderón-Sánchez ◽  
Juan Antonio Rosado ◽  
Antonio Ordoñez-Fernández ◽  
...  

Orai1 and STIM1, molecular components of store-operated calcium entry (SOCE), have been associated with vascular smooth muscle cell (VSMC) proliferation in vascular remodeling. Nevertheless, the role of SARAF (SOCE-associated regulatory factor), a regulatory protein involved in STIM1 inhibition, in vascular remodeling has not been examined. The aim of this study is to examine the role of SARAF and Orai1 in VSMC proliferation and neointima formation after balloon injury of rat carotid arteries. Experiments were conducted in an animal model of rat carotid angioplasty to characterize neointima formation. VSMC isolated from rat coronary arteries was also used to examine cell proliferation. The formation of neointima after balloon injury of rat carotid arteries was confirmed by hematoxylin and eosin staining of tissue sections up to 3 wk after surgery. Injured arteries showed significantly higher expression of SARAF, STIM1, and Orai1 compared with control tissues, corroborating the presence of these regulatory proteins in the neointima layer. Proximity ligation and coimmunoprecipitation assays revealed that SARAF interacts with Orai1 in the neointima. Furthermore, selective silencing of SARAF and Orai1 by small interfering RNA (siRNA) inhibited IGF-1–induced VSMC proliferation. Our data suggest that SARAF interacts with Orai1 to modulate SOCE and VSMC proliferation after vascular injury.


2021 ◽  
Vol 22 (6) ◽  
pp. 3238
Author(s):  
Ho-Wei Hsu ◽  
Ting-Yi Lin ◽  
Yi-Ching Liu ◽  
Jwu-Lai Yeh ◽  
Jong-Hau Hsu

The ductus arteriosus (DA) is a physiologic vessel crucial for fetal circulation. As a major regulating factor, the prostaglandin pathway has long been the target for DA patency maintenance or closure. However, the adverse effect of prostaglandins and their inhibitors has been a major unsolved clinical problem. Furthermore, a significant portion of patients with patent DA fail to respond to cyclooxygenase inhibitors that target the prostaglandin pathway. These unresponsive medical patients ultimately require surgical intervention and highlight the importance of exploring pathways independent from this well-recognized prostaglandin pathway. The clinical limitations of prostaglandin-targeting therapeutics prompted us to investigate molecules beyond the prostaglandin pathway. Thus, this article introduces molecules independent from the prostaglandin pathway based on their correlating mechanisms contributing to vascular remodeling. These molecules may serve as potential targets for future DA patency clinical management.


1987 ◽  
Vol 252 (5) ◽  
pp. R842-R847 ◽  
Author(s):  
N. Ballatori ◽  
E. Miles ◽  
T. W. Clarkson

Previous studies in neonatal and suckling animals showed that immature animals have a greatly diminished capacity to excrete manganese and therefore were considered to be unable to regulate tissue manganese concentrations. In contrast, the present studies indicate that suckling rats have the capacity to excrete excess manganese at rates nearly comparable to those of adults. Eight- to 10-day-old rats given a tracer dose of 54MnCl2 (essentially carrier free), either via gavage or by intraperitoneal injection showed little elimination of the 54Mn until the 18-19th day of life, when there was an abrupt increase in the rate of the metal's excretion. However, when manganese was given in doses of 1 and 10 mg/kg, the young animals excreted from 30-70% of the dose in only 4 days, at which time a new rate of excretion was achieved. This enhanced rate of excretion remained constant until the 18-19th day of life, when it was again accelerated. Biliary excretion of manganese, the primary route for the elimination of the metal, was only 30-60% lower in 14-day-old rats compared with adults at doses ranging from tracer to 10 mg 54Mn/kg. For both the 14-day-old and adult rats, an apparent biliary transport maximum was reached at a dose of 10 mg Mn/kg. These studies indicate that the excretory pathways for manganese are well developed in the neonatal rat. The avid retention of tracer quantities of manganese by the neonate may be a consequence of the scarcity of this essential trace metal in its diet.


1977 ◽  
Vol 166 (3) ◽  
pp. 421-428 ◽  
Author(s):  
Joanne Pieringer ◽  
G. Subba Rao ◽  
Paul Mandel ◽  
Ronald A. Pieringer

The sulphogalactosylglycerolipid of rat brain is closely associated with the process of myelination, as demonstrated by the following observations. 1. The lipid is barely detectable in rat brain before 10 days of age, accumulates rapidly between age 10 and 25 days, and remains relatively constant in amount (between 0.3 and 0.4μmol per brain) thereafter into adult life. 2. The activity of adenosine 3′-phosphate 5′-sulphatophosphate–galactosyldiacylglycerol sulphotransferase is almost absent before 10 days of age, attains a maximum at age 20 days, and slowly decreases thereafter with increasing age. This developmental pattern correlates well with that of other myelin-specific metabolites. 3. Both the concentration of the sulphogalactosylglycerolipid and the activity of sulphotransferase are greatly decreased in the non-myelinating jimpy mouse. 4. The myelin fraction of rat brain contains most of the sulphogalactosylglycerolipid. The lipid occurs in a diacyl and an alkylacyl form. Determinations of the relative amount of each type in brain showed about a 1:1 mixture in both 21-day-old and adult rats. Rats injected with H235SO4 at 20 days of age lost35S from the diacyl form at a higher rate than from the alkylacyl compound over a 21-day period. These data suggest that the diacyl form has a higher turnover than the alkylacyl derivative. The percentage of the total sulpholipid content of brain contributed by the sulphogalactosylglycerolipid is 16% in 21-day-old rats and 8.4% in adult rats.


1995 ◽  
Vol 25 (2) ◽  
pp. 51A-52A
Author(s):  
Ron Waksman ◽  
Keith A. Robinson ◽  
Joel Schneider ◽  
Gustavo Cipolla ◽  
Hiroyuki Masayasu ◽  
...  

2013 ◽  
Vol 114 (4) ◽  
pp. 472-481 ◽  
Author(s):  
Heidi Kletzien ◽  
John A. Russell ◽  
Glen E. Leverson ◽  
Nadine P. Connor

Age-associated changes in tongue muscle structure and strength may contribute to dysphagia in elderly people. Tongue exercise is a current treatment option. We hypothesized that targeted tongue exercise and nontargeted exercise that activates tongue muscles as a consequence of increased respiratory drive, such as treadmill running, are associated with different patterns of tongue muscle contraction and genioglossus (GG) muscle biochemistry. Thirty-one young adult, 34 middle-aged, and 37 old Fischer 344/Brown Norway rats received either targeted tongue exercise, treadmill running, or no exercise (5 days/wk for 8 wk). Protrusive tongue muscle contractile properties and myosin heavy chain (MHC) composition in the GG were examined at the end of 8 wk across groups. Significant age effects were found for maximal twitch and tetanic tension (greatest in young adult rats), MHCIIb (highest proportion in young adult rats), MHCIIx (highest proportion in middle-aged and old rats), and MHCI (highest proportion in old rats). The targeted tongue exercise group had the greatest maximal twitch tension and the highest proportion of MHCI. The treadmill running group had the shortest half-decay time, the lowest proportion of MHCIIa, and the highest proportion of MHCIIb. Fatigue was significantly less in the young adult treadmill running group and the old targeted tongue exercise group than in other groups. Thus, tongue muscle structure and contractile properties were affected by both targeted tongue exercise and treadmill running, but in different ways. Studies geared toward optimizing dose and manner of providing targeted and generalized tongue exercise may lead to alternative tongue exercise delivery strategies.


Gene Therapy ◽  
2006 ◽  
Vol 14 (5) ◽  
pp. 396-404 ◽  
Author(s):  
R Cooney ◽  
S O Hynes ◽  
F Sharif ◽  
L Howard ◽  
T O'Brien

1992 ◽  
Vol 116 (1) ◽  
pp. 167-176 ◽  
Author(s):  
D Wren ◽  
G Wolswijk ◽  
M Noble

We have been studying the differing characteristics of oligodendrocyte-type-2 astrocyte (O-2A) progenitors isolated from optic nerves of perinatal and adult rats. These two cell types display striking differences in their in vitro phenotypes. In addition, the O-2Aperinatal progenitor population appears to have a limited life-span in vivo, while O-2Aadult progenitors appear to be maintained throughout life. O-2Aperinatal progenitors seem to have largely disappeared from the optic nerve by 1 mo after birth, and are not detectable in cultures derived from optic nerves of adult rats. In contrast, O-2Aadult progenitors can first be isolated from optic nerves of 7-d-old rats and are still present in optic nerves of 1-yr-old rats. These observations raise two questions: (a) From what source do O-2Aadult progenitors originate; and (b) how is the O-2Aadult progenitor population maintained in the nerve throughout life? We now provide in vitro evidence indicating that O-2Aadult progenitors are derived directly from a subpopulation of O-2Aperinatal progenitors. We also provide evidence indicating that O-2Aadult progenitors are capable of prolonged self renewal in vitro. In addition, our data suggests that the in vitro generation of oligodendrocytes from O-2Aadult progenitors occurs primarily through asymmetric division and differentiation, in contrast with the self-extinguishing pattern of symmetric division and differentiation displayed by O-2Aperinatal progenitors in vitro. We suggest that O-2Aadult progenitors express at least some properties of stem cells and thus may be able to support the generation of both differentiated progeny cells as well as their own continued replenishment throughout adult life.


Sign in / Sign up

Export Citation Format

Share Document