Endotoxemia-induced myocardial dysfunction is not associated with changes in myofilament Ca2+responsiveness

1998 ◽  
Vol 274 (2) ◽  
pp. H580-H590 ◽  
Author(s):  
Sherri L. Rigby ◽  
Polly A. Hofmann ◽  
Juming Zhong ◽  
H. Richard Adams ◽  
Leona J. Rubin

Myocardial contractile function is depressed after onset of endotoxemia and is intrinsic to the ventricular myocyte. We tested the hypothesis that decreased Ca2+ responsiveness of the contractile myofilaments underlies this inotropic depression. Specifically, we evaluated the relationship between Ca2+ and unloaded cell shortening and isometric tension development of skinned guinea pig ventricular myocytes. Myocytes were isolated 4 h after intraperitoneal injection of 4 mg/kg Escherichia colilipopolysaccharide (LPS) or saline (control; Ctl). Myofilament Ca2+ responsiveness assessed by image analysis of shortening of skinned myocytes at pH 7.0 was not different between Ctl [pCa value that resulted in half-maximal shortening (pCa50): 5.78 ± 0.04] and LPS (pCa50: 5.72 ± 0.02). Similarly, myofilament Ca2+ responsiveness measured by isometric tension of skinned myocytes was not different between Ctl (pCa50: 5.73 ± 0.02) and LPS (pCa50: 5.76 ± 0.02). Maximal tension generated by LPS myocytes (2.89 ± 0.23 g/mm2) was significantly less ( P < 0.05) than Ctl (3.75 ± 0.34 g/mm2). However, when myocytes were isolated and skinned in the presence of protease inhibitors, maximal tension generated by LPS myocytes (3.53 ± 0.98 g/mm2) was similar to Ctl (3.01 ± 0.80 g/mm2). We conclude that in vivo administration of LPS resulting in endotoxemia without shock does not alter myofilament Ca2+ responsiveness of ventricular myocytes. Rather, reduced contractility is more likely a result of decreased Ca2+ availability because systolic Ca2+ transients of fura 2-loaded LPS myocytes were significantly decreased ( P < 0.05) compared with Ctl myocytes.

1985 ◽  
Vol 248 (6) ◽  
pp. H818-H826 ◽  
Author(s):  
J. L. Parker ◽  
H. R. Adams

Isolated heart muscle preparations were used to investigate the onset and development of myocardial inotropic dysfunction during endotoxin shock in guinea pigs. Left atrial muscles were removed from separate groups of animals at increasing time intervals after administration of either 4 mg/kg purified Escherichia coli endotoxin (shock groups) or an equivalent volume of isotonic saline (control groups). Peak developed contractile tension (CT) and maximal rate of tension development (+dT/dtmax) were significantly depressed in shock tissues as early as 2 h postendotoxin (P less than 0.01), with the magnitude of the contractile deficit progressively increasing during 4, 6, and 12 h postendotoxin. Contractility remained significantly depressed (P less than 0.001) at 16 and 24 h postendotoxin but progressively recovered toward control levels during 16, 24, 48, and 72 h postendotoxin. Shock-induced myocardial dysfunction was characterized by altered contractile responsiveness to low-Ca2+ medium (0.5 mM), gentamicin (4 mM), and hypoxia; altered inotropic reactivity to these interventions followed similar temporal development as the postendotoxin changes in basal contractile parameters. Left ventricular papillary muscles obtained at 16 h postendotoxin corroborated the shock-induced contractile depression observed in atria. These studies provide evidence for early and progressive intrinsic myocardial dysfunction in endotoxin shock and demonstrate that this dysfunction can be unmasked through the study of in vitro atrial and ventricular heart muscle preparations isolated from in vivo shocked animals.


1999 ◽  
Vol 276 (6) ◽  
pp. H1853-H1860 ◽  
Author(s):  
John P. Maurice ◽  
Ashish S. Shah ◽  
Alan P. Kypson ◽  
Jonathan A. Hata ◽  
David C. White ◽  
...  

We studied alterations in the β-adrenergic receptor (β-AR) system of rabbit hearts during the development of heart failure (HF) after myocardial infarction (MI) to determine whether the molecular β-AR abnormalities associated with human HF exist in this animal model. Rabbit HF was established 3 wk after left circumflex coronary artery (LCX) ligation by in vivo physiological measurements, and molecular β-AR signaling was examined in tissue and cultured ventricular myocytes. We found that there was a significant global reduction in β-AR density by ∼50% in both ventricles of MI animals compared with sham-operated control animals and that functional β-AR coupling was significantly reduced. Importantly, as found in human HF, myocardial protein levels and activity of the β-AR kinase (β-ARK1) and Gαi were found to be significantly elevated in MI rabbits, suggesting that these molecules are contributing to myocardial dysfunction. Thus the myocardial β-AR system of this rabbit model of HF shares important biochemical characteristics with human HF and therefore is an ideal laboratory model to investigate novel therapeutic targets for the treatment of HF.


1988 ◽  
Vol 255 (4) ◽  
pp. H699-H703 ◽  
Author(s):  
L. W. Smith ◽  
K. H. McDonough

In early sepsis, maintenance of in vivo cardiovascular performance is at least partly dependent on sympathetic support to hearts with intrinsic contractile defects. Yet prolonged sympathetic stimulation, as occurs in sepsis, would be expected to alter the heart's ability to respond to this stimulation. We have investigated myocardial inotropic sensitivity to beta-adrenergic stimulation in a model of sepsis in which animals, at the time studied, exhibited bacteremia, normal arterial blood pressure and cardiac output, elevated heart rate, and elevated plasma catecholamines. Intrinsic myocardial contractile function, as assessed by the maximal rate of left ventricular pressure development (LV dP/dtmax) in an isovolumically contracting heart preparation, was significantly depressed in septic animals. To determine whether hearts from septic animals could respond normally to beta-adrenergic stimulation, we studied inotropic response to a bolus of isoproterenol in these isolated hearts. With maximal isoproterenol stimulation, hearts from septic animals were able to attain the same dP/dtmax as were hearts from control animals. With lower levels of isoproterenol, there was also no difference in inotropic indexes between the two groups when response was expressed as a percent of the maximal increase in dP/dtmax achieved with isoproterenol. These results suggest that in early sepsis, despite intrinsic myocardial contractile dysfunction, the ability of the heart to modulate its inotropic state in response in beta-adrenergic stimulation is intact.


1998 ◽  
Vol 275 (2) ◽  
pp. R502-R508 ◽  
Author(s):  
Xianzhong Meng ◽  
Lihua Ao ◽  
Daniel R. Meldrum ◽  
Brian S. Cain ◽  
Brian D. Shames ◽  
...  

Exogenous tumor necrosis factor-α (TNF-α) induces delayed myocardial depression in vivo but promotes rapid myocardial depression in vitro. The temporal relationship between endogenous TNF-α and endotoxemic myocardial depression is unclear, and the role of TNF-α in this myocardial disorder remains controversial. Using a rat model of endotoxemia not complicated by shock, we sought to determine 1) the temporal relationship of changes in circulating and myocardial TNF-α with myocardial depression, 2) the influences of protein synthesis inhibition or immunosuppression on TNF-α production and myocardial depression, and 3) the influence of neutralization of TNF-α on myocardial depression. Rats were treated with lipopolysaccharide (LPS, 0.5 mg/kg ip). Circulating and myocardial TNF-α increased at 1 and 2 h, whereas myocardial contractility was depressed at 4 and 6 h. Pretreatment with cycloheximide or dexamethasone abolished the increase in circulating and myocardial TNF-α and preserved myocardial contractile function. Similarly, treatment with TNF binding protein immediately after LPS prevented myocardial depression. We conclude that endogenous TNF-α mediates delayed myocardial depression in endotoxemic rats and that inhibition of TNF-α production or neutralization of TNF-α preserves myocardial contractile function in endotoxemia.


1991 ◽  
Vol 261 (6) ◽  
pp. H1880-H1888
Author(s):  
J. M. Capasso ◽  
P. Li ◽  
P. Anversa

To determine whether mechanical evaluation of muscle tissue removed from the myocardium can be employed as a direct indicator of cardiac contractile performance in situ, isometric and isotonic parameters of muscle mechanics in vitro were correlated with in vivo global functional characteristics of the same heart. Twelve-month-old animals maintained on standard food and water were employed as representative of normal cardiac function. Animals of identical age with left ventricular (LV) dysfunction induced by oral alcohol (30%) ingestion from 4 to 12 mo were utilized to represent depressed cardiac performance. Accordingly, 24 h after the establishment of the hemodynamic profile for a control or experimental heart, the LV posterior papillary muscle was removed from the same heart and examined isometrically and isotonically. Least squares regression analysis was employed to establish a correlation coefficient and P values between various in vitro and in vivo parameters. Hemodynamic measurements were performed under chloral hydrate anesthesia and LV pump performance was evaluated with respect to aortic and ventricular pressures and the rates of rise and decay of the LV pressure trace. Papillary muscles were evaluated with respect to timing parameters of the isometric and isotonic twitch, the first derivative of isometric tension development, and the speed of muscle shortening at increasing physiologic loads. LV peak rate of pressure rise and decay were then correlated with the various isometric and isotonic properties. Myocardial mechanics and hemodynamics revealed depressed function in the papillary muscles and hearts from alcoholic rats. Moreover, significant correlations were found between the LV rate of pressure change (peak +dP/dt and -dP/dt) and both isometric and isotonic twitch measurements.(ABSTRACT TRUNCATED AT 250 WORDS)


2011 ◽  
Vol 89 (4) ◽  
pp. 305-310 ◽  
Author(s):  
Wellington Lunz ◽  
Antônio José Natali ◽  
Miguel Araújo Carneiro ◽  
Luciano dos Santos Aggum Capettini ◽  
Marcelo Perim Baldo ◽  
...  

The main purpose of this study was to investigate the effects of short-term L-NAME treatment on the contractile function of left ventricle (LV) myocytes and the expression of proteins related to Ca2+ homeostasis. Data from Wistar rats treated with L-NAME (L group, n = 20; 0.7 g/L in drinking water; 7 days) were compared with results from untreated controls (C group, n = 20). Cardiomyocytes from the L group showed increased (p < 0.05) fractional shortening (23%) and maximum rate of shortening (20%) compared with the C group. LV from the L group also showed increased (p < 0.05) expression of the ryanodine receptor 2 and Na+/Ca2+ exchanger proteins (76% and 83%, respectively; p < 0.05). However, the L and C groups showed similar in vivo hemodynamic parameters of cardiac function. In conclusion, short-term NOS inhibition determines an increased expression of Ca2+ regulatory proteins, which contributes to improving cardiomyocyte contractile function, preserving left ventricular function.


1996 ◽  
Vol 271 (4) ◽  
pp. C1316-C1324 ◽  
Author(s):  
X. Meng ◽  
J. M. Brown ◽  
L. Ao ◽  
S. K. Nordeen ◽  
W. Franklin ◽  
...  

Endotoxin (bacterial lipopolysaccharide, LPS) depresses myocardial function. However, heat shock and sublethal LPS can confer cardiac resistance to postischemic dysfunction. We hypothesized that a prior exposure to LPS stress induces the expression of cardiac heat shock protein 70 (HSP70) and resistance to endotoxemic myocardial depression. Moreover, induction of HSP70 by hyperthermia should also increase cardiac resistance to LPS toxicity. LPS (500 micrograms/kg ip) depressed rat left ventricular developed pressure (LVDP) maximally at 6 h (58.4 +/- 3.72 vs. 101 +/- 1.46 mmHg in saline control, P < 0.01), and myocardial contractile function recovered at 24 h. In rats pretreated with LPS 24 h earlier, subsequent LPS exposure did not depress LVDP (97.0 +/- 3.53 mmHg at 6 h, P < 0.01 vs. single exposure). Both LPS and hyperthermia (42 degrees C, 15 min) induced HSP72 mainly in the cardiac interstitial cells, including macrophages at 24 h after treatment. When hyperthermia-pretreated animals were similarly challenged with LPS, myocardial depression at 6 h was partially abrogated (LVDP 80.1 +/- 5.67 vs. 62.2 +/- 4.91 mmHg in sham+LPS group, P < 0.01). We conclude that LPS induces HSP70 in rat heart and that an exposure to LPS or heat stress confers cardiac resistance to endotoxemic myocardial depression.


2014 ◽  
Vol 307 (3) ◽  
pp. H353-H360 ◽  
Author(s):  
Jared R. Tangney ◽  
Stuart G. Campbell ◽  
Andrew D. McCulloch ◽  
Jeffrey H. Omens

Dyssynchronous activation of the heart leads to abnormal regional systolic stretch. In vivo studies have suggested that the timing of systolic stretch can affect regional tension and external work development. In the present study, we measured the direct effects of systolic stretch timing on the magnitude of tension and external work development in isolated murine right ventricular papillary muscles. A servomotor was used to impose precisely timed stretches relative to electrical activation while a force transducer measured force output and strain was monitored using a charge-couple device camera and topical markers. Stretches taking place during peak intracellular Ca2+ statistically increased peak tension up to 270%, whereas external work due to stretches in this interval reached values of 500 J/m. An experimental analysis showed that time-varying elastance overestimated peak tension by 100% for stretches occurring after peak isometric tension. The addition of the force-velocity relation explained some effects of stretches occurring before the peak of the Ca2+ transient but had no effect in later stretches. An estimate of transient deactivation was measured by performing quick stretches to dissociate cross-bridges. The timing of transient deactivation explained the remaining differences between the model and experiment. These results suggest that stretch near the start of cardiac tension development substantially increases twitch tension and mechanical work production, whereas late stretches decrease external work. While the increased work can mostly be explained by the time-varying elastance of cardiac muscle, the decreased work in muscles stretched after the peak of the Ca2+ transient is largely due to myofilament deactivation.


1994 ◽  
Vol 72 (7) ◽  
pp. 722-727 ◽  
Author(s):  
Tom L. Broderick ◽  
Stephen J. Kopp ◽  
June T. Daar ◽  
Fred D. Romano ◽  
Dennis J. Paulson

The contribution of metabolic control to in vivo myocardial contractile function in response to β1-adrenergic stimulation was determined in the spontaneously diabetic BB Wor rat. The study involved a group of insulin-dependent BB Wor rats showing marked variations in metabolic control, assessed by the level of glycosylated hemoglobin (gHb). These diabetic BB rats were divided into moderate and severe (%gHb > 14) diabetic groups. A group of Wistar rats and diabetes-resistant BB Wor rats served as controls. In vivo myocardial contractile function was measured under basal conditions and after i.v. dobutamine infusions in anesthetized rats, using a catheter-tip pressure transducer inserted into the left ventricle. No dramatic differences in heart rate with dobutamine stimulation were observed between the moderate, severe diabetic, and diabetes-resistant groups. However, heart rate was lower in Wistar control rats compared with these groups. Systolic left ventricular pressure was depressed in severe diabetic rats compared with Wistar controls. In addition, positive dP/dt was significantly less in the severe diabetic group at the highest doses of stimulation, whereas negative dP/dt was depressed under basal conditions and remained so with increasing doses of dobutamine. In the diabetic group maximal systolic left ventricular pressure, rate–pressure product, and negative dP/dt responses to dobutamine were all inversely correlated with gHb. These results indicate that changes in metabolic control of the insulin-dependent BB diabetic rat can contribute to a depressed myocardial contractile function.Key words: glycosylated hemoglobin, cardiac function, dobutamine, BB rat.


Sign in / Sign up

Export Citation Format

Share Document