Increased expression of eukaryotic initiation factor 4E during growth of neonatal rat cardiocytes in vitro

1998 ◽  
Vol 274 (6) ◽  
pp. H2133-H2142 ◽  
Author(s):  
Antoine A. Makhlouf ◽  
Paul J. McDermott

Eukaryotic initiation factor 4E (eIF-4E) is rate limiting for translational initiation. The purpose of this study was to determine whether eIF-4E levels are increased during cardiocyte growth produced by increased load in the form of electrically stimulated contraction. Neonatal rat cardiocytes were cultured on a matrix of aligned type I collagen. The cardiocytes aligned in parallel to the direction of the collagen fibrils and exhibited an elongated, rod-shaped morphology. Cardiocytes were electrically stimulated to contract at 3 Hz (alternating polarity, 5-ms pulse width). Nonstimulated cardiocytes were quiescent and used as controls. Electrically stimulated contraction produced hypertrophic growth as determined by the following criteria: 1) increased protein content, 2) increased RNA content, 3) accelerated rate of protein synthesis, and 4) threefold increase in promoter activity of the atrial natriuretic factor gene. Cardiocyte growth was associated with an increase in eIF-4E mRNA levels that reached 48 ± 9% after 2 days of electrically stimulated contraction. eIF-4E protein levels were increased by more than twofold over the same time period. We conclude that an adaptive increase in eIF-4E is an important mechanism for maintaining translational efficiency during cardiocyte growth.

2004 ◽  
Vol 378 (1) ◽  
pp. 73-82 ◽  
Author(s):  
William J. TUXWORTH ◽  
Atif N. SAGHIR ◽  
Laura S. SPRUILL ◽  
Donald R. MENICK ◽  
Paul J. McDERMOTT

In adult cardiocytes, eIF4E (eukaryotic initiation factor 4E) activity and protein synthesis are increased concomitantly in response to stimuli that induce hypertrophic growth. We tested the hypothesis that increases in eIF4E activity selectively improve the translational efficiency of mRNAs that have an excessive amount of secondary structure in the 5´-UTR (5´-untranslated region). The activity of eIF4E was modified in primary cultures of adult cardiocytes using adenoviral gene transfer to increase either the amount of eIF4E or the extent of endogenous eIF4E phosphorylation. Subsequently, the effects of eIF4E on translational efficiency were assayed following adenoviral-mediated expression of luciferase reporter mRNAs that were either ‘stronger’ (less structure in the 5´-UTR) or ‘weaker’ (more structure in the 5´-UTR) with respect to translational efficiency. The insertion of G+C-rich repeats into the 5´-UTR doubled the predicted amount of secondary structure and was sufficient to reduce translational efficiency of the reporter mRNA by 48±13%. Translational efficiency of the weaker reporter mRNA was not significantly improved by overexpression of wild-type eIF4E when compared with the stronger reporter mRNA. In contrast, overexpression of the eIF4E kinase Mnk1 [MAP (mitogen-activated protein) kinase signal-integrating kinase 1] was sufficient to increase the translational efficiency of either reporter mRNA, independent of the amount of secondary structure in their respective 5´-UTRs. The increases in translational efficiency produced by Mnk1 occurred in association with corresponding decreases in mRNA levels. These findings indicate that the positive effect of eIF4E phosphorylation on translational efficiency in adult cardiocytes is coupled with the stability of mRNA.


2001 ◽  
Vol 268 (20) ◽  
pp. 5375-5385 ◽  
Author(s):  
Linda McKendrick ◽  
Simon J. Morley ◽  
Virginia M. Pain ◽  
Rosemary Jagus ◽  
Bhavesh Joshi

2011 ◽  
Vol 115 (27) ◽  
pp. 8746-8754 ◽  
Author(s):  
Katarzyna Kiraga-Motoszko ◽  
Anna Niedzwiecka ◽  
Anna Modrak-Wojcik ◽  
Janusz Stepinski ◽  
Edward Darzynkiewicz ◽  
...  

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Kevin Morine ◽  
Vikram Paruchuri ◽  
Xiaoying Qiao ◽  
Emily Mackey ◽  
Mark Aronovitz ◽  
...  

Introduction: Activin receptor like kinase 1 (ALK1) mediates signaling via transforming growth factor beta-1 (TGFb1), a pro-fibrogenic cytokine. No studies have defined a role for ALK1 in heart failure. We tested the hypothesis that reduced ALK1 expression promotes maladaptive cardiac remodeling in heart failure. Methods and Results: ALK1 mRNA expression was quantified by RT-PCR in left ventricular (LV) tissue from patients with end-stage heart failure and compared to control LV tissue obtained from the National Disease Research Interchange (n=8/group). Compared to controls, LV ALK1 mRNA levels were reduced by 85% in patients with heart failure. Next, using an siRNA approach, we tested whether reduced ALK1 levels promote TGFb1-mediated collagen production in human cardiac fibroblasts. Treatment with an ALK1 siRNA reduced ALK1 mRNA levels by 75%. Compared to control, TGFb1-mediated Type I collagen and pSmad-3 protein levels were 2.5-fold and 1.7-fold higher, respectively, after ALK1 depletion. To explore a role for ALK1 in heart failure, ALK1 haploinsufficient (ALK1) and wild-type mice (WT; n=8/group) were studied 2 weeks after thoracic aortic constriction (TAC). Compared to WT, baseline LV ALK1 mRNA levels were 50% lower in ALK1 mice. Both LV and lung weights were higher in ALK1 mice after TAC. Cardiomyocyte area and LV mRNA levels of BNP, RCAN, and b-MHC were increased similarly, while SERCa levels were reduced in both ALK1 and WT mice after TAC. Compared to WT, LV fibrosis (Figure) and Type 1 Collagen mRNA and protein levels were higher among ALK1 mice. Compared to WT, LV fractional shortening (48±12 vs 26±10%, p=0.01) and survival (Figure) were lower in ALK1 mice after TAC. Conclusions: Reduced LV expression of ALK1 is associated with advanced heart failure in humans and promotes early mortality, impaired LV function, and cardiac fibrosis in a murine model of heart failure. Further studies examining the role of ALK1 and ALK1 inhibitors on cardiac remodeling are required.


1984 ◽  
Vol 4 (9) ◽  
pp. 1843-1852
Author(s):  
R J Focht ◽  
S L Adams

We analyzed the control of type I collagen synthesis in four kinds of differentiated cells from chicken embryos which synthesize very different amounts of the protein. Tendon, skin, and smooth muscle cells were found to have identical amounts of type I collagen RNAs; however, the RNAs had inherently different translatabilities, which were observed both in vivo and in vitro. Chondrocytes also had substantial amounts of type I collagen RNAs, even though they directed no detectable synthesis of the protein either in vivo or in vitro. Type I collagen RNAs in chondrocytes display altered electrophoretic mobilities, suggesting that in these cells the reduction in translational efficiency may be mediated in part by changes in the RNA structure. These data indicate that control of type I collagen gene expression is a complex process which is exerted at both transcriptional and post-transcriptional levels.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jianxia Wen ◽  
Dan Wang ◽  
Jian Wang ◽  
Ruilin Wang ◽  
Shizhang Wei ◽  
...  

Astragali Radix (AR), the dried root of Astragali Radix membranaceus (Fisch.) Bge. or Astragali Radix membranaceus (Fisch.) Bge. var. mongholicus (Bge) Hsiao, is a commonly used traditional Chinese medicine for the treatment of liver diseases. This study aimed to comprehensively evaluate the pharmacological action and explore the potential mechanism of AR on liver fibrosis. Rats were administered with carbon tetrachloride for eight weeks, followed by oral treatment with AR for six weeks. The efficacy was confirmed by measuring liver function and liver fibrosis levels. The underlying mechanisms were explored by detecting the expression of related proteins. AR significantly decreased the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), collagen IV (COL-IV), hyaluronic acid (HA), laminin (LN), and precollagen type III (PCIII). In addition, AR inhibited the deposition of collagen and the activation of hepatic stellate cells. Those data strongly demonstrated that AR alleviated liver fibrosis by CCl4. In order to illustrate the potential inflammatory, the mRNA levels of IL-6, TNF-α, and IL-1β were detected. Subsequently, immunohistochemistry analysis was performed to further verify the expression of type I collagen. Finally, the expression of key proteins in the inflammatory signaling pathway was detected. AR significantly reduced the expression of high-mobility group box 1 (HMGB1), TLR4, Myd88, RAGE, and NF-κ B p65 genes and proteins. In addition, western blotting showed AR decreased the protein expression of RAGE, p-MEK1/2, p-ERK1/2, and p-c-Jun. Taken together, our data reveal that AR significantly inhibits liver fibrosis by intervening in the HMGB1-mediated inflammatory signaling pathway and secretion signaling pathway. This study will provide valuable references for the in-depth research and development of Astragali Radix against liver fibrosis.


1990 ◽  
Vol 265 (2) ◽  
pp. 461-469 ◽  
Author(s):  
A H Ang ◽  
G Tachas ◽  
J H Campbell ◽  
J F Bateman ◽  
G R Campbell

Enzymically isolated rabbit aortic smooth-muscle cells (SMC) in the first few days of primary culture express a ‘contractile phenotype’, but with time these cells modulate to a ‘synthetic phenotype’. Synthetic-state SMC are able to proliferate, and, provided that they undergo fewer than 5 cumulative population doublings, return to the contractile phenotype after reaching confluency [Campbell, Kocher, Skalli, Gabbiani & Campbell (1989) Arteriosclerosis 9, 633-643]. The present study has determined the synthesis of collagen, at the protein and mRNA levels, by cultured SMC as they undergo a change in phenotypic state. The results show that, upon modulating to the synthetic phenotype, SMC synthesized 25-30 times more collagen than did contractile cells. At the same time, non-collagen-protein synthesis increased only 5-6-fold, indicating a specific stimulation of collagen synthesis. Steady-state mRNA levels are also elevated, with alpha 2(I) and alpha 1(III) mRNA levels 30 times and 20 times higher respectively, probably reflecting increased transcriptional activity. Phenotypic modulation was also associated with an alteration in the relative proportions of type I and III collagens synthesized, contractile SMC synthesizing 78.1 +/- 3.6% (mean +/- S.D.) type I collagen and 17.5 +/- 4.7% type III collagen, and synthetic cells synthesizing 90.3 +/- 2.0% type I collagen and 5.8% +/- 1.8% type III collagen. Enrichment of type I collagen was similarly noted at the mRNA level. On return to the contractile state, at confluency, collagen production and the percentage of type I collagen decreased. This further illustrates the close association between the phenotypic state of SMC and their collagen-biosynthetic phenotype.


Sign in / Sign up

Export Citation Format

Share Document