Linear and nonlinear analysis of human dynamic cerebral autoregulation

1999 ◽  
Vol 277 (3) ◽  
pp. H1089-H1099 ◽  
Author(s):  
Ronney B. Panerai ◽  
Suzanne L. Dawson ◽  
John F. Potter

The linear dynamic relationship between systemic arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV) was studied by time- and frequency-domain analysis methods. A nonlinear moving-average approach was also implemented using Volterra-Wiener kernels. In 47 normal subjects, ABP was measured with Finapres and CBFV was recorded with Doppler ultrasound in both middle cerebral arteries at rest in the supine position and also during ABP drops induced by the sudden deflation of thigh cuffs. Impulse response functions estimated by Fourier transfer function analysis, a second-order mathematical model proposed by Tiecks, and the linear kernel of the Volterra-Wiener moving-average representation provided reconstructed velocity model responses, for the same segment of data, with significant correlations to CBFV recordings corresponding to r = 0.52 ± 0.19, 0.53 ± 0.16, and 0.67 ± 0.12 (mean ± SD), respectively. The correlation coefficient for the linear plus quadratic kernels was 0.82 ± 0.08, significantly superior to that for the linear models ( P < 10−6). The supine linear impulse responses were also used to predict the velocity transient of a different baseline segment of data and of the thigh cuff velocity response with significant correlations. In both cases, the three linear methods provided equivalent model performances, but the correlation coefficient for the nonlinear model dropped to 0.26 ± 0.25 for the baseline test set of data and to 0.21 ± 0.42 for the thigh cuff data. Whereas it is possible to model dynamic cerebral autoregulation in humans with different linear methods, in the supine position a second-order nonlinear component contributes significantly to improve model accuracy for the same segment of data used to estimate model parameters, but it cannot be automatically extended to represent the nonlinear component of velocity responses of different segments of data or transient changes induced by the thigh cuff test.

2020 ◽  
Vol 128 (2) ◽  
pp. 397-409
Author(s):  
Vasilis Z. Marmarelis ◽  
Dae C. Shin ◽  
Mareike Oesterreich ◽  
Martin Mueller

The study of dynamic cerebral autoregulation (DCA) in essential hypertension has received considerable attention because of its clinical importance. Several studies have examined the dynamic relationship between spontaneous beat-to-beat arterial blood pressure data and contemporaneous cerebral blood flow velocity measurements (obtained via transcranial Doppler at the middle cerebral arteries) in the form of a linear input-output model using transfer function analysis. This analysis is more reliable when the contemporaneous effects of changes in blood CO2 tension are also taken into account, because of the significant effects of CO2 dynamic vasomotor reactivity (DVR) upon cerebral flow. In this article, we extract such input-output predictive models from spontaneous time series hemodynamic data of 24 patients with essential hypertension and 20 normotensive control subjects under resting conditions, using the novel methodology of principal dynamic modes (PDMs) that achieves improved estimation accuracy over previous methods for relatively short and noisy data. The obtained data-based models are subsequently used to compute indexes and markers that quantify DCA and DVR in each subject or patient and therefore can be used to assess the effects of essential hypertension. These model-based DCA and DVR indexes were properly defined to capture the observed effects of DCA and VR and found to be significantly different ( P < 0.05) in the hypertensive patients. We also found significant differences between patients and control subjects in the relative contribution of three PDMs to the model output prediction, a finding that offers the prospect of identifying the physiological mechanisms affected by essential hypertension when the PDMs are interpreted in terms of specific physiological mechanisms. NEW & NOTEWORTHY This article presents novel model-based methodology for obtaining diagnostic indexes of dynamic cerebral autoregulation and dynamic vasomotor reactivity in hypertension.


2018 ◽  
Vol 315 (4) ◽  
pp. R730-R740 ◽  
Author(s):  
Ronney B. Panerai ◽  
Sam C. Barnes ◽  
Mintu Nath ◽  
Naomi Ball ◽  
Thompson G. Robinson ◽  
...  

Dynamic cerebral autoregulation (CA), the transient response of cerebral blood flow (CBF) to rapid changes in arterial blood pressure (BP), is usually modeled as a linear mechanism. We tested the hypothesis that dynamic CA can display nonlinear behavior resulting from differential efficiency dependent on the direction of BP changes. Cerebral blood velocity (CBV) (transcranial Doppler), heart rate (HR) (three-lead ECG), continuous BP (Finometer), and end-tidal CO2 (capnograph) were measured in 10 healthy young subjects during 15 squat-stand maneuvers (SSM) with a frequency of 0.05 Hz. The protocol was repeated with a median (interquartile range) of 44 (35–64) days apart. Dynamic CA was assessed with the autoregulation index (ARI) obtained from CBV step responses estimated with an autoregressive moving-average model. Mean BP, HR, and CBV were different (all P < 0.001) between squat and stand, regardless of visits. ARI showed a strong interaction ( P < 0.001) of SSM with the progression of transients; in general, the mean ARI was higher for the squat phase compared with standing. The changes in ARI were partially explained by concomitant changes in CBV ( P = 0.023) and pulse pressure ( P < 0.001), but there was no evidence that ARI differed between visits ( P = 0.277). These results demonstrate that dynamic CA is dependent on the direction of BP change, but further work is needed to confirm if this finding can be generalized to other physiological conditions and also to assess its dependency on age, sex and pathology.


2005 ◽  
Vol 289 (3) ◽  
pp. H1202-H1208 ◽  
Author(s):  
Ronney B. Panerai ◽  
Michelle Moody ◽  
Penelope J. Eames ◽  
John F. Potter

Dynamic cerebral autoregulation (CA) describes the transient response of cerebral blood flow (CBF) to rapid changes in arterial blood pressure (ABP). We tested the hypothesis that the efficiency of dynamic CA is increased by brain activation paradigms designed to induce hemispheric lateralization. CBF velocity [CBFV; bilateral, middle cerebral artery (MCA)], ABP, ECG, and end-tidal Pco2 were continuously recorded in 14 right-handed healthy subjects (21–43 yr of age), in the seated position, at rest and during 10 repeated presentations (30 s on-off) of a word generation test and a constructional puzzle. Nonstationarities were not found during rest or activation. Transfer function analysis of the ABP-CBFV (i.e., input-output) relation was performed for the 10 separate 51.2-s segments of data during activation and compared with baseline data. During activation, the coherence function below 0.05 Hz was significantly increased for the right MCA recordings for the puzzle tasks compared with baseline values (0.36 ± 0.16 vs. 0.26 ± 0.13, P < 0.05) and for the left MCA recordings for the word paradigm (0.48 ± 0.23 vs. 0.29 ± 0.16, P < 0.05). In the same frequency range, significant increases in gain were observed during the puzzle paradigm for the right (0.69 ± 0.37 vs. 0.46 ± 0.32 cm·s−1·mmHg−1, P < 0.05) and left (0.61 ± 0.29 vs. 0.45 ± 0.24 cm·s−1·mmHg−1, P < 0.05) hemispheres and during the word tasks for the left hemisphere (0.66 ± 0.31 vs. 0.39 ± 0.15 cm·s−1·mmHg−1, P < 0.01). Significant reductions in phase were observed during activation with the puzzle task for the right (−0.04 ± 1.01 vs. 0.80 ± 0.86 rad, P < 0.01) and left (0.11 ± 0.81 vs. 0.57 ± 0.51 rad, P < 0.05) hemispheres and with the word paradigm for the right hemisphere (0.05 ± 0.87 vs. 0.64 ± 0.59 rad, P < 0.05). Brain activation also led to changes in the temporal pattern of the CBFV step response. We conclude that transfer function analysis suggests important changes in dynamic CA during mental activation tasks.


2016 ◽  
Vol 120 (12) ◽  
pp. 1434-1441 ◽  
Author(s):  
Sung-Moon Jeong ◽  
Seon-Ok Kim ◽  
Darren S. DeLorey ◽  
Tony G. Babb ◽  
Benjamin D. Levine ◽  
...  

Cerebral vasomotor reactivity (CVMR) and dynamic cerebral autoregulation (CA) are measured extensively in clinical and research studies. However, the relationship between these measurements of cerebrovascular function is not well understood. In this study, we measured changes in cerebral blood flow velocity (CBFV) and arterial blood pressure (BP) in response to stepwise increases in inspired CO2 concentrations of 3 and 6% to assess CVMR and dynamic CA in 13 healthy young adults [2 women, 32 ± 9 (SD) yr]. CVMR was assessed as percentage changes in CBFV (CVMRCBFV) or cerebrovascular conductance index (CVCi, CVMRCVCi) in response to hypercapnia. Dynamic CA was estimated by performing transfer function analysis between spontaneous oscillations in BP and CBFV. Steady-state CBFV and CVCi both increased exponentially during hypercapnia; CVMRCBFV and CVMRCVCi were greater at 6% (3.85 ± 0.90 and 2.45 ± 0.79%/mmHg) than at 3% CO2 (2.09 ± 1.47 and 0.21 ± 1.56%/mmHg, P = 0.009 and 0.005, respectively). Furthermore, CVMRCBFV was greater than CVMRCVCi during either 3 or 6% CO2 ( P = 0.017 and P < 0.001, respectively). Transfer function gain and coherence increased in the very low frequency range (0.02-0.07 Hz), and phase decreased in the low-frequency range (0.07–0.20 Hz) when breathing 6%, but not 3% CO2. There were no correlations between the measurements of CVMR and dynamic CA. These findings demonstrated influences of inspired CO2 concentrations on assessment of CVMR and dynamic CA. The lack of correlation between CVMR and dynamic CA suggests that cerebrovascular responses to changes in arterial CO2 and BP are mediated by distinct regulatory mechanisms.


2007 ◽  
Vol 102 (2) ◽  
pp. 658-664 ◽  
Author(s):  
Philip N. Ainslie ◽  
Katie Burgess ◽  
Prajan Subedi ◽  
Keith R. Burgess

We tested the hypothesis that, following exposure to high altitude, cerebrovascular reactivity to CO2 and cerebral autoregulation would be attenuated. Such alterations may predispose to central sleep apnea at high altitude by promoting changes in brain Pco2 and thus breathing stability. We measured middle cerebral artery blood flow velocity (MCAv; transcranial Doppler ultrasound) and arterial blood pressure during wakefulness in conditions of eucapnia (room air), hypocapnia (voluntary hyperventilation), and hypercapnia (isooxic rebeathing), and also during non-rapid eye movement (stage 2) sleep at low altitude (1,400 m) and at high altitude (3,840 m) in five individuals. At each altitude, sleep was studied using full polysomnography, and resting arterial blood gases were obtained. During wakefulness and polysomnographic-monitored sleep, dynamic cerebral autoregulation and steady-state changes in MCAv in relation to changes in blood pressure were evaluated using transfer function analysis. High altitude was associated with an increase in central sleep apnea index (0.2 ± 0.4 to 20.7 ± 23.2 per hour) and an increase in mean blood pressure and cerebrovascular resistance during wakefulness and sleep. MCAv was unchanged during wakefulness, whereas there was a greater decrease during sleep at high altitude compared with low altitude (−9.1 ± 1.7 vs. −4.8 ± 0.7 cm/s; P < 0.05). At high altitude, compared with low altitude, the cerebrovascular reactivity to CO2 in the hypercapnic range was unchanged (5.5 ± 0.7 vs. 5.3 ± 0.7%/mmHg; P = 0.06), while it was lowered in the hypocapnic range (3.1 ± 0.7 vs. 1.9 ± 0.6%/mmHg; P < 0.05). Dynamic cerebral autoregulation was further reduced during sleep ( P < 0.05 vs. low altitude). Lowered cerebrovascular reactivity to CO2 and reduction in both dynamic cerebral autoregulation and MCAv during sleep at high altitude may be factors in the pathogenesis of breathing instability.


2013 ◽  
Vol 114 (2) ◽  
pp. 211-216 ◽  
Author(s):  
Yojiro Ogawa ◽  
Ken Aoki ◽  
Jitsu Kato ◽  
Ken-ichi Iwasaki

Diuretic-induced mild hypovolemia with hemoconcentration reportedly improves dynamic cerebral autoregulation, whereas central hypovolemia without hemoconcentration induced by lower body negative pressure (LBNP) has no effect or impairs dynamic cerebral autoregulation. This discrepancy may be explained by different blood properties, by degrees of central hypovolemia, or both. We investigated the effects of equivalent central hypovolemia induced by furosemide administration or LBNP application on dynamic cerebral autoregulation to test our hypothesis that mild central hypovolemia due to furosemide administration enhances dynamic cerebral autoregulation in contrast to LBNP. Seven healthy male subjects received 0.4 mg/kg furosemide and LBNP, with equivalent decreases in central venous pressure (CVP). Dynamic cerebral autoregulation was assessed by spectral and transfer function analysis between beat-to-beat mean arterial blood pressure (MAP) and mean cerebral blood flow velocity (MCBFV). CVP decreased by ∼3–4 mmHg with both furosemide administration (∼26 mg) and LBNP (approximately −20 mmHg). Steady state MCBFV remained unchanged with both techniques, whereas MAP increased significantly with furosemide administration. Coherence and transfer function gain in the low and high frequency ranges with hypovolemia due to furosemide administration were significantly lower than those due to LBNP (ANOVA interaction effects, P < 0.05), although transfer function gain in the very low frequency range did not change. Our results suggest that although the decreases in CVP were equivalent between furosemide administration and LBNP, the resultant central hypovolemia differentially affected dynamic cerebral autoregulation. Mild central hypovolemia with hemoconcentration resulting from furosemide administration may enhance dynamic cerebral autoregulation compared with LBNP.


2021 ◽  
pp. 0271678X2110041
Author(s):  
Ronney B Panerai ◽  
Victoria J Haunton ◽  
Osian Llwyd ◽  
Jatinder S Minhas ◽  
Emmanuel Katsogridakis ◽  
...  

Instantaneous arterial pressure-flow (or velocity) relationships indicate the existence of a cerebral critical closing pressure (CrCP), with the slope of the relationship expressed by the resistance-area product (RAP). In 194 healthy subjects (20–82 years, 90 female), cerebral blood flow velocity (CBFV, transcranial Doppler), arterial blood pressure (BP, Finapres) and end-tidal CO2 (EtCO2, capnography) were measured continuously for five minutes during spontaneous fluctuations of BP at rest. The dynamic cerebral autoregulation (CA) index (ARI) was extracted with transfer function analysis from the CBFV step response to the BP input and step responses were also obtained for the BP-CrCP and BP-RAP relationships. ARI was shown to decrease with age at a rate of −0.025 units/year in men (p = 0.022), but not in women (p = 0.40). The temporal patterns of the BP-CBFV, BP-CrCP and BP-RAP step responses were strongly influenced by the ARI (p < 0.0001), but not by sex. Age was also a significant determinant of the peak of the CBFV step response and the tail of the RAP response. Whilst the RAP step response pattern is consistent with a myogenic mechanism controlling dynamic CA, further work is needed to explore the potential association of the CrCP step response with the flow-mediated component of autoregulation.


2017 ◽  
Vol 123 (3) ◽  
pp. 558-566 ◽  
Author(s):  
Sam C. Barnes ◽  
Naomi Ball ◽  
Ronney B. Panerai ◽  
Thompson G. Robinson ◽  
Victoria J. Haunton

Squat/stand maneuvers (SSM) have been used to assess dynamic cerebral autoregulation (dCA), but always at a fixed frequency (FF). This study aimed to assess the use of random-frequency (RF) SSMs as a stimulus for measuring dCA and determine the reproducibility of FF and RFSSMs. Twenty-nine healthy volunteers [19 male, mean age 23.0 (4.9) yr] completed the study; 11 returned for a repeat visit (median 45 days). Heart rate, beat-to-beat blood pressure, middle cerebral artery (MCA) blood flow velocity, end-tidal CO2, and angle of the squat movement were measured. Subjects underwent four recordings: 5 min sitting, 5 min standing, FFSSMs (0.05Hz), and RFSSMs. Subjects were asked to rate the degree of exertion experienced while performing these maneuvers. Twenty-nine subjects completed the protocol; nine data sets were deemed unsuitable for further analysis. Mean ARI of 6.21 (1.04) while standing was significantly greater than during the SSMs ( P < 0.01), with mean (SD) ARI during the FF and RFSSMs being 5.16 (1.43) and 5.37 (1.21), respectively. However, no significant difference was found between the ARI estimates from the two SSMs ( P = 0.856) or for each of the four recordings between the two visits ( P = 0.645). RFSSMs were found to be significantly less tiring than FFSSMs ( P < 0.01). In conclusion, RFSSMs are an effective and noninvasive method of assessing dCA. There is no difference in the ARI estimates in comparison with FFSSMs. Although FFSSMs have been well tolerated previously, RFSSMs are preferred by healthy subjects and thus may be better tolerated by a patient population in a clinical setting. NEW & NOTEWORTHY RFSSMs provided comparable estimates of autoregulatory indices to FFSSMs. Instead of point estimates at the driven frequency, RFSSMs generate a broader power spectrum of changes in arterial blood pressure and cerebral blood flow velocity, allowing direct comparison with spontaneous fluctuations through transfer function analysis. Moreover, random-frequency SSMs are preferred by participants. They are a novel tool by which larger blood pressure oscillations can be elicited for the reliable measurement of dynamic cerebral autoregulation.


2010 ◽  
Vol 108 (3) ◽  
pp. 604-613 ◽  
Author(s):  
N. E. Dineen ◽  
F G. Brodie ◽  
T. G. Robinson ◽  
R. B. Panerai

Dynamic cerebral autoregulation (CA) is the transient response of cerebral blood flow (CBF) to rapid blood pressure changes: it improves in hypocapnia and becomes impaired during hypercapnia. Batch-processing techniques have mostly been used to measure CA, providing a single estimate for an entire recording. A new approach to increase the temporal resolution of dynamic CA parameters was applied to transient hypercapnia and hypocapnia to describe the time-varying properties of dynamic CA during these conditions. Thirty healthy subjects (mean ± SD: 25 ± 6 yr, 9 men) were recruited. CBF velocity was recorded in both middle cerebral arteries (MCAs) with transcranial Doppler ultrasound. Arterial blood pressure (Finapres), end-tidal CO2 (ETCO2; infrared capnograph), and a three-lead ECG were also measured at rest and during repeated breath hold and hyperventilation. A moving window autoregressive moving average model provided continuous values of the dynamic CA index [autoregulation index (ARI)] and unconstrained gain. Breath hold led to significant increase in ETCO2 (+5.4 ± 6.1 mmHg), with concomitant increase in CBF velocity in both MCAs. Continuous dynamic CA parameters showed highly significant changes ( P < 0.001), with a temporal pattern reflecting a delayed dynamic response of CA to changes in arterial Pco2 and a maximal reduction in ARI of −5.1 ± 2.4 and −5.1 ± 2.3 for the right and left MCA, respectively. Hyperventilation led to a marked decrease in ETCO2 (−7.2 ± 4.1 mmHg, P < 0.001). Unexpectedly, CA efficiency dropped significantly with the inception of the metronome-controlled hyperventilation, but, after ∼30 s, the ARI increased gradually to show a maximum change of 5.7 ± 2.9 and 5.3 ± 3.0 for the right and left MCA, respectively ( P < 0.001). These results confirm the potential of continuous estimates of dynamic CA to improve our understanding of human cerebrovascular physiology and represent a promising new approach to improve the sensitivity of clinical applications of dynamic CA modeling.


2021 ◽  
Vol 12 ◽  
Author(s):  
Navpreet Reehal ◽  
Stephanie Cummings ◽  
Michael T. Mullen ◽  
Wesley B. Baker ◽  
David Kung ◽  
...  

Objective: Transcranial Doppler is commonly used to calculate cerebral autoregulation, but measurements are typically restricted to a single cerebral artery. In exploring topographic heterogeneity, this study reports the first thorough comparison of autoregulation in all major cerebral vessels.Methods: In forty healthy adults, flow velocity was monitored in the anterior, middle, and posterior cerebral arteries, and synchronized with arterial blood pressure. A transfer function analysis provided characteristics of autoregulation by quantifying the relationship between blood pressure and cerebral blood flow velocity.Results: Phase, which quantifies the time course of autoregulation, was similar in all vessels. Gain, which quantifies the magnitude of hemodynamic regulation, was lower in posterior cerebral artery, indicative of tighter regulation. However, after adjusting for baseline flow differences in each vascular territory, normalized gain was similar in all vessels.Conclusions: Discriminating dynamic cerebral autoregulation between cerebrovascular territories is feasible with a transcranial doppler based approach. In the posterior cerebral artery of healthy volunteers, absolute flow is more tightly regulated, but relative flow regulation is consistent across cerebrovascular territories.Significance: The methodology can be applied to focal disease states such as stroke or posterior reversible encephalopathy syndrome, in which the topographic distribution of autoregulation may be particularly critical.


Sign in / Sign up

Export Citation Format

Share Document