P2X4 receptors mediate ATP-induced calcium influx in human vascular endothelial cells

2000 ◽  
Vol 279 (1) ◽  
pp. H285-H292 ◽  
Author(s):  
Kimiko Yamamoto ◽  
Risa Korenaga ◽  
Akira Kamiya ◽  
Zhi Qi ◽  
Masahiro Sokabe ◽  
...  

ATP induces Ca2+ influx across the cell membrane and activates release from intracellular Ca2+ pools in vascular endothelial cells (ECs). Ca2+ signaling leads to the modification of a variety of EC functions, including the production of vasoactive substances such as nitric oxide and prostacyclin. However, the molecular mechanisms for ATP-induced Ca2+ influx in ECs have not been thoroughly clarified. Here we demonstrate evidence that a P2X4receptor for an ATP-gated cation channel is predominantly expressed in human ECs and is involved in the ATP-induced Ca2+ influx. Northern blot analysis distinctly showed the expression of P2X4 mRNA in human ECs cultured from the umbilical vein, aorta, pulmonary artery, and skin microvessels. Competitive PCR revealed that P2X4 mRNA expression was much higher in ECs than was the expression of other subtypes, including P2X1, P2X3, P2X5, and P2X7. Treatment of ECs with antisense oligonucleotides designed to target the P2X4 receptor decreased the P2X4 mRNA and protein levels to ∼25% of control levels and markedly prevented the ATP-induced Ca2+ influx.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Purum Kang ◽  
Seung Ho Han ◽  
Hea Kyung Moon ◽  
Jeong-Min Lee ◽  
Hyo-Keun Kim ◽  
...  

The purpose of the present study is to examine the effects of essential oil ofCitrus bergamiaRisso (bergamot, BEO) on intracellular Ca2+in human umbilical vein endothelial cells. Fura-2 fluorescence was used to examine changes in intracellular Ca2+concentration[Ca2+]i. In the presence of extracellular Ca2+, BEO increased[Ca2+]i, which was partially inhibited by a nonselective Ca2+channel blocker La3+. In Ca2+-free extracellular solutions, BEO increased[Ca2+]iin a concentration-dependent manner, suggesting that BEO mobilizes intracellular Ca2+. BEO-induced[Ca2+]iincrease was partially inhibited by a Ca2+-induced Ca2+release inhibitor dantrolene, a phospholipase C inhibitor U73122, and an inositol 1,4,5-triphosphate (IP3)-gated Ca2+channel blocker, 2-aminoethoxydiphenyl borane (2-APB). BEO also increased[Ca2+]iin the presence of carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of mitochondrial Ca2+uptake. In addition, store-operated Ca2+entry (SOC) was potentiated by BEO. These results suggest that BEO mobilizes Ca2+from primary intracellular stores via Ca2+-induced and IP3-mediated Ca2+release and affect promotion of Ca2+influx, likely via an SOC mechanism.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Huan Liu ◽  
Yikai Qiu ◽  
Xiuying Pei ◽  
Ramamurthy Chitteti ◽  
Rebbeca Steiner ◽  
...  

AbstractAngiogenesis is a physiological process for the formation of new blood vessels from the pre-existing vessels and it has a vital role in the survival and growth of neoplasms. During tumor angiogenesis, the activation of the gene transcriptions in vascular endothelial cells (ECs) plays an essential role in the promotion of EC proliferation, migration, and vascular network development. However, the molecular mechanisms underlying transcriptional regulation of EC and tumor angiogenesis remains to be fully elucidated. Here we report that the transcription factor Yin Yang 1 (YY1) in ECs is critically involved in tumor angiogenesis. First, we utilized a tamoxifen-inducible EC-specific YY1 deficient mouse model and showed that YY1 deletion in ECs inhibited the tumor growth and tumor angiogenesis. Using the in vivo matrigel plug assay, we then found that EC-specific YY1 ablation inhibited growth factor-induced angiogenesis. Furthermore, vascular endothelial growth factor (VEGF)-induced EC migration was diminished in YY1-depleted human umbilical vein endothelial cells (HUVECs). Finally, a rescue experiment revealed that YY1-regulated BMP6 expression in ECs was involved in EC migration. Collectively, our results demonstrate that endothelial YY1 has a crucial role in tumor angiogenesis and suggest that targeting endothelial YY1 could be a potential therapeutic strategy for cancer treatment.


2021 ◽  
Author(s):  
Kiyomi Tsuji-Tamura ◽  
Saori Morino-Koga ◽  
Shingo Suzuki ◽  
Minetaro Ogawa

Elongation of vascular endothelial cells (ECs) is an important process of angiogenesis. However, the molecular mechanisms remain unknown. An actin cross-linking protein TAGLN (Transgelin, SM22 or SM22alpha) is abundantly expressed in smooth muscle cells (SMCs) and widely used as its canonical marker. In the course of studies using embryonic stem cells (ESCs) carrying an Tagln promoter-driven fluorescence marker, we noticed the activation of Tagln promoter in EC elongation. Tagln promoter activation co-occurred with EC elongation by vascular endothelial growth factor (VEGF). Inhibition of PI3K-Akt and mTORC1 also induced EC elongation and Tagln promoter activation. Human umbilical vein endothelial cells (HUVECs) elongated, activated TAGLN promoter and increased TAGLN transcripts in angiogenesis model. Genetic disruption of TAGLN augmented angiogenic behaviors of HUVECs, as did the disruption of TAGLN2 and TAGLN3 genes. Tagln expression was found in ECs in mouse embryos. Our results identify TAGLN as a novel putative regulator of angiogenesis whose expression is activated in elongating ECs. This finding provides insight into the cytoskeletal regulation of EC elongation and an improved understanding of the molecular mechanisms underlying the regulation of angiogenesis.


2012 ◽  
Vol 40 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Gillian R. Milne ◽  
Timothy M. Palmer ◽  
Stephen J. Yarwood

Chronic inflammatory diseases, such as atherosclerosis, are a major cause of death and disability in the developed world. In this respect, although cholesterol obviously plays a predominant role in atherosclerosis, targeting inflammation at lesion sites may be just as important. Indeed, elevated IL-6 (interleukin 6) levels are as strongly associated with coronary heart disease as increased cholesterol. We have been investigating novel cAMP-regulated pathways that combat the action of pro-inflammatory cytokines, such as IL-6 and leptin, in the VECs (vascular endothelial cells) of the circulatory system. In this respect, we have begun to unravel new molecular mechanisms by which the cAMP/Epac1 (exchange protein directly activated by cAMP 1)/Rap1 pathway can initiate a rigorous programme of protective anti-inflammatory responses in VECs. Central to this is the coupling of cAMP elevation to the mobilization of two C/EBP (CCAAT/enhancer-binding protein) family transcription factors, resulting in the induction of the SOCS3 (suppressor of cytokine signalling 3) gene, which attenuates pro-inflammatory cytokine signalling in VECs. These novel ‘protective’ mechanisms of cAMP action will inform the development of the next generation of pharmaceuticals specifically designed to combat endothelial inflammation associated with cardiovascular disease.


1987 ◽  
Vol 242 (2) ◽  
pp. 347-352 ◽  
Author(s):  
D M L Morgan

The responses of human umbilical-vein vascular endothelial cells in culture to the naturally occurring polyamines spermine, spermidine and putrescine, their acetyl derivatives and oxidation products were examined. In the absence of human polyamine oxidase, exposure of cells to polyamines (up to 160 microM) had no adverse effects. In the presence of polyamine oxidase, spermine and spermidine were cytotoxic, but putrescine was not. Acetylation of the aminopropyl group of spermidine or both aminopropyl groups of spermine prevented this cytotoxicity. The amino acids corresponding to the polyamines, representing a further stage of oxidation, were also without effect. The cytotoxic effects were irreversible. Use of bovine serum amine oxidase in place of the human enzyme gave qualitatively similar results.


2018 ◽  
Vol 46 (2) ◽  
pp. 520-531 ◽  
Author(s):  
Yan Ding ◽  
Lanlan Shan ◽  
Wenqing Nai ◽  
Xiaojun Lin ◽  
Ling Zhou ◽  
...  

Background/Aims: The mechanistic target of rapamycin (mTOR) signaling pathway is essential for angiogenesis and embryonic development. DEP domain-containing mTOR-interacting protein (DEPTOR) is an mTOR binding protein that functions to inhibit the mTOR pathway In vitro experiments suggest that DEPTOR is crucial for vascular endothelial cell (EC) activation and angiogenic responses. However, knowledge of the effects of DEPTOR on angiogenesis in vivo is limited. This study aimed to determine the role of DEPTOR in tissue angiogenesis and to elucidate the molecular mechanisms. Methods: Cre/loxP conditional gene knockout strategy was used to delete the Deptor gene in mouse vascular ECs. The expression or distribution of cluster of differentiation 31 (CD31), vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1 alpha (HIF-1α) were detected by immunohistochemical staining or western blot. Tube formation assay was used to measure angiogenesis in vitro. Results: Deptor knockdown led to increased expression of CD31, VEGF and HIF-1α in heart, liver, kidney and aorta. After treatment with rapamycin, their expression was significantly down regulated. In vitro, human umbilical vein endothelial cells (HUVECs) were transfected with DEPTOR-specific small interfering RNA (siRNA), which resulted in a significant increase in endothelial tube formation and migration rates. In contrast, DEPTOR overexpression markedly reduced the expression of CD31, VEGF and HIF-1α. Conclusions: Our findings demonstrated that deletion of the Deptor gene in vascular ECs resulted in upregulated expression of CD31 and HIF-1α, and further stimulated the expression of VEGF which promoted angiogenesis, indicating that disruption of normal angiogenic pathways may occur through hyperactivation of the mTORC1/HIF-1α/VEGF signaling pathway.


1992 ◽  
Vol 263 (5) ◽  
pp. L595-L601 ◽  
Author(s):  
C. Tiruppathi ◽  
H. Lum ◽  
T. T. Andersen ◽  
J. W. Fenton ◽  
A. B. Malik

We examined the binding characteristics of the recently described thrombin receptor amino-terminal peptide, SFLLRNPNDKYEPF (T. K. H. Vu, D. T. Hung, V. I. Wheaton, and S. R. Coughlin. Cell 64: 1057-1068, 1991), termed TRP-14, and its effect in activating intracellular calcium transients in pulmonary vascular endothelial cells. Binding of 125I-labeled TRP-14 was found to be saturable with a affinity constant of 2 microM and maximum binding of 41 pmol/mg of cell protein. The 125I-labeled TRP-14 also interacted with bovine pulmonary microvessel endothelial cells, human umbilical vein endothelial cells, and porcine pulmonary artery smooth muscle cells. Binding of 125I-labeled diisopropylphosphoryl (DIP)-alpha-thrombin, which is catalytically inactive but binds to thrombin receptors, was not inhibited by TRP-14 or vice versa, indicating that TRP-14 did not compete for the alpha-thrombin binding site(s) on the endothelial cell surface. TRP-14 (> 1 microM) increased the concentration of intracellular calcium ([Ca2+]i) in endothelial cells with kinetics similar to the increase in [Ca2+]i triggered by alpha-thrombin. In contrast, DIP-alpha-thrombin did not increase [Ca2+]i and also did not prevent the rise in [Ca2+]i induced by the subsequent challenge with either TRP-14 or alpha-thrombin. Because the generation of TRP-14 by the proteolytically active forms of thrombin stimulated a rise in endothelial [Ca2+]i, TRP-14 may be the agonist responsible for the activation of the alpha-thrombin receptor in pulmonary vascular endothelial cells.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document