Changes in cardiac contractile function and myocardial [Ca2+]i after burn trauma: NMR study

2001 ◽  
Vol 280 (4) ◽  
pp. H1916-H1922 ◽  
Author(s):  
Zhao-Fan Xia ◽  
Piyu Zhao ◽  
Jureta W. Horton

Cutaneous burn trauma causes cardiac contraction and relaxation defects, but the mechanism is unclear. Previous studies suggest that burn-related changes in myocyte handling of calcium may play an important role in postburn cardiac dysfunction. With the use of a high dissociation constant ( K d) calcium indicator 1,2-bis(2-amino-5,6-difluorophenoxy)-ethane- N,N,N′, N′-tetraacetic acid (TF-BAPTA) and 19F NMR spectroscopy, this study examined the correlation between the changes in cytosolic free calcium concentration ([Ca2+]i) and cardiac function after burn trauma. Sprague-Dawley rats were given scald burn (over 40% of the total body surface area) or sham burn. Twenty-four hours later, the hearts were excised and perfused by the Langendorff method with a modified phosphate-free Krebs-Henseleit bicarbonate buffer. Left ventricular (LV) developed pressure (LVDP), calculated from peak systolic LV pressure and LV end-diastolic pressure, was assessed through a catheter attached to an intraventricular balloon. At the same time, 31P and 19F NMR spectroscopy was performed before and after TF-BAPTA loading. LVDP measured in hearts from burned rats was <40% than that measured in hearts from sham burn rats (65 ± 6 vs. 110 ± 12 mmHg, P < 0.01); [Ca2+]i was increased fourfold in hearts from the burned group compared with that measured in the sham burn group (0.807 ± 0.192 vs. 3.891 ± 0.929 μM). Loading TF-BAPTA in hearts transiently decreased LVDP by 15%. Phosphocreatine-to-Pi ratio decreased, but ATP and intracellular pH remained unchanged by either TF-BAPTA loading or burn trauma. In conclusion, burn trauma impaired cardiac contractility, and this functional defect was paralleled by a significant rise in [Ca2+]i in the heart.

2001 ◽  
Vol 91 (6) ◽  
pp. 2695-2702 ◽  
Author(s):  
Patricia J. Sikes ◽  
Piyu Zhao ◽  
David L. Maass ◽  
Jureta W. Horton

In this study,23Na- and 31P- nuclear magnetic resonance (NMR) spectra were examined in perfused rat hearts harvested 1, 2, 4, and 24 h after 40% total body surface area burn trauma and lactated Ringer resuscitation, 4 ml · kg−1 · %−1 burn.23Na-NMR spectroscopy monitored myocardial intracellular Na+ using the paramagnetic shift reagent thulium 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(methylenephosphonic acid). Left ventricular function, cardiac high-energy phosphates (ATP/PCr), and myocyte intracellular pH were studied by using31P NMR spectroscopy to examine the hypothesis that burn-mediated acidification of cardiomyocytes contributes to subsequent Na+ accumulation by this cell population. Intracellular Na+ accumulation was confirmed by sodium-binding benzofuran isophthalate loading and fluorescence spectroscopy in cardiomyocytes isolated 1, 2, 4, 8, 12, 18, and 24 h postburn. This myocyte Na+ accumulation as early as 2 h postburn occurred despite no changes in cardiac ATP/PCr and intracellular pH. Left ventricular function progressively decreased after burn trauma. Cardiomyocyte Na+ accumulation paralleled cardiac contractile dysfunction, suggesting that myocardial Na+overload contributes, in part, to the progressive postburn decrease in ventricular performance.


2001 ◽  
Vol 280 (4) ◽  
pp. H1591-H1601 ◽  
Author(s):  
Jureta W. Horton ◽  
David L. Maass ◽  
Jean White ◽  
Billy Sanders

Whereas hypertonic saline-dextran (HSD, 7.5% NaCl in 6% D70) improves cardiac contractile function after burn trauma, the mechanisms of HSD-related cardioprotection remain unclear. We recently showed that cardiomyocytes secrete tumor necrosis factor-α (TNF-α), a response that was enhanced by burn trauma. This study addressed the question: does HSD modulate cardiac contraction/relaxation by altering cardiomyocyte TNF-α secretion? Wistar-Furth rats (325 g) were given a burn injury over 40% of the total body surface area and were then randomized to receive a bolus of either isotonic saline or HSD (4 ml/kg, n = 14 rats/group). Sham burn rats were given either isotonic saline or HSD ( n = 14 rats/group) to provide appropriate controls for the two burn groups. Hearts were isolated 24 h postburn for either Langendorff perfusion ( n = 8 hearts/group) or to prepare cardiomyocytes ( n = 6 hearts/group). Myocytes were stimulated with lipopolysaccharide (LPS) (0, 10, 25, or 50 μg for 18 h) to measure cytokine secretion. Burn trauma increased myocyte TNF-α and interleukin-1β and -6 secretion, exacerbated cytokine response to LPS stimulus, and impaired cardiac contraction. HSD treatment of burns decreased cardiomyocyte cytokine secretion, decreased responsiveness to LPS challenge with regard to cytokine secretion, and improved ventricular function. These data suggest that HSD mediates cardioprotection after burn trauma, in part, by downregulating cardiomyocyte secretion of inflammatory cytokines.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Satoshi Takeda ◽  
Hiroshi Yoshida ◽  
Takeki Ogawa

AIM: A cytosolic free calcium is an important regulator of cardiac metabolism and contractility, and an increased [Ca2+]i has been implicated in irreversible cell injury and contractile dysfunction. We investigated intracellular calcium ([Ca2+]i) dynamics during cardiac arrest, especially in pulseless electrical activity (PEA) and asystole. METHODS: Rat hearts (n=18) were perfused with a Langendorff system and loaded with Fura-2/AM, as a [Ca2+]i marker, and BCECF/AM, as a pHi marker. Surface fluorescence of the heart was recorded with an intracellular ion analyzer. A latex balloon was inserted into the left ventricle to monitor left ventricular pressure. Sustained normo-thermic cardiac arrest was induced for 20 min by clamping the aortic cannula. RESULTS: After clamping (cardiac arrest), the left ventricular developed pressure decreased significantly, from 84.3±11 mmHg to 3.88±0.7 mmHg (p<0.01) at 2min. The rhythm was PEA in all cases in this period, followed by asystole. The amplitude of the [Ca2+]i transient (0.30±0.03) was maintained at 2 min, but further significant increases were observed in both systolic (1.14±0.04, p<0.01) and diastolic levels of [Ca2+]i (0.84±0.04, p<0.05), when compared with pre-arrest levels. The [Ca2+]i transient disappeared 4.7±0.6 min. The diastolic [Ca2+]i increased gradually after 5 min to 20 min. This diastolic [Ca2+]i increase was parallel with the increase in left ventricular end diastolic pressure (indicated ischemic contracture). The pHi increased (to 7.6±1.0) immediately after clamping. Thereafter pHi decreased rapidly and remained steady (at pH 6.6±0.6). CONCLUSIONS: The change in the [Ca2+]i-pressure relationship rather than change in the amplitude of the [Ca2+]i transient was the main contributor in the early cardiac arrest phase. The diastolic [Ca2+]i increase might induce irreversible cell injury in the late cardiac arrest phase.


2005 ◽  
Vol 288 (1) ◽  
pp. H221-H226 ◽  
Author(s):  
Meijing Wang ◽  
Ben M. Tsai ◽  
Ajay Kher ◽  
Lauren B. Baker ◽  
G. Mathenge Wairiuko ◽  
...  

Myocardial ischemia is the leading cause of death in both men and women; however, very little information exists regarding the effect of testosterone on the response of myocardium to acute ischemic injury. We hypothesized that testosterone may exert deleterious effects on myocardial inflammatory cytokine production, p38 MAPK activation, apoptotic signaling, and myocardial functional recovery after acute ischemia-reperfusion (I/R). To study this, isolated, perfused rat hearts (Langendorff) from adult males, castrated males, and males treated with a testosterone receptor blocker (flutamide) were subjected to 25 min of ischemia followed by 40 min of reperfusion. Myocardial contractile function (left ventricular developed pressure, left ventricular end-diastolic pressure, positive and negative first derivative of pressure) was continuously recorded. After reperfusion, hearts were analyzed for expression of tissue TNF-α, IL-1β, and IL-6 (ELISA) and activation of p38 MAPK, caspase-1, caspase-3, caspase-11, and Bcl-2 (Western blot). All indices of postischemic myocardial functional recovery were significantly higher in castrated males or flutamide-treated males compared with untreated males. After I/R, castrated male and flutamide-treated male hearts had decreased TNF-α, IL-1β, and IL-6; decreased activated p38 MAPK; decreased caspase-1, caspase-3, and caspase-11; and increased Bcl-2 expression compared with untreated males. These results show that blocking the testosterone receptor (flutamide) or depleting testosterone (castration) in normal males improves myocardial function after I/R. These effects may be attributed to the proinflammatory and/or the proapoptotic properties of endogenous testosterone. Further understanding may allow therapeutic manipulation of sex hormone signaling mechanisms in the treatment of acute I/R.


1996 ◽  
Vol 1 (3) ◽  
pp. 235-242 ◽  
Author(s):  
Pradip K. Dhar ◽  
Ingrid L. Grupp ◽  
Arnold Schwartz ◽  
Gunter Grupp ◽  
Mohammed A. Matlib

Background 3-(2,2,2-trimethylhydrazinium) propionate (THP or mildronate) is an inhibitor of carnitine biosynthesis. This study was carried out to determine whether feeding of guinea pigs with THP results in decreased myocardial-free carnitine content and, as a result, attenuates hypoxic damage in isolated and paced work-performing hearts. Methods and Results Guinea pigs were administered either distilled water or 100 mg THP/kg/day orally for 10 days. The treatment resulted in about a 50% decline in myocardial-free carnitine content, from 11.1 ± 0.2 (n = 5) to 5.6 ± 0.2 (n = 5) μM/g dry weight of the heart. The left ventricular contractile function of the hearts was measured during normoxic perfusion (PO2 = 590 mmHg), hypoxic perfusion (PO2 = 149 mmHg), and reperfusion (PO2 = 590 mmHg). In both untreated and THP-treated groups, the rate of development of intraventricular pressure (+dP/dt) under normoxic perfusion was similar; however, +dP/dt declined to about 10% of the initial rate within 20 minutes of hypoxic perfusion. In the THP-treated group of hearts, the initial decline was slower than that of the untreated animal hearts. After 20 minutes of normoxic reperfusion following 60 minutes of hypoxic perfusion, the recovery of +dP/dt and -dP/dt was greater in the THP-treated group than in the untreated group. The elevation of end-diastolic pressure during hypoxia was completely reversed by normoxic reperfusion of the THP-treated group but not in the untreated group. Mitochondria isolated from hearts from the THP-treated group after normoxic reperfusion following hypoxic perfusion exhibited better respiratory function than those from untreated hearts. Conclusion The data suggest that feeding guinea pigs with THP results in reduced myocardial-free carnitine content and attenuation of hypoxic and reperfusion injury in isolated hearts.


1986 ◽  
Vol 251 (4) ◽  
pp. H734-H741 ◽  
Author(s):  
W. A. Boyle ◽  
L. D. Segel

We studied the direct cardiac effects of arginine vasopressin (AVP) by use of an isolated working rat heart model perfused with Krebs-Henseleit medium. At a concentration of 878 +/- 15 pg/ml, AVP produced significant (P less than 0.05) decreases in coronary flow (-31 +/- 2%); myocardial O2 consumption (-12 +/- 2%); left ventricular peak systolic pressure (-5 +/- 1%); dP/dtmax (-7 +/- 1%); -dP/dtmax (-6 +/- 3%); peak aortic flow rate (-5 +/- 1%); stroke work (-3 +/- 1%); peak power (-8 +/- 1%); and total output (-3 +/- 1%). Aortic output increased significantly (+7 +/- 1%) as did arteriovenous O2 difference (+108 +/- 14 mmHg); left ventricular end-diastolic pressure (+0.4 +/- 0.1 mmHg); efficiency (+1.5 +/- 0.4%); and rate of lactate release (+1.27 +/- 0.21 nmol/ml perfusate/min). Dose-response relationships were studied at 9 +/- 1, 25 +/- 1, 75 +/- 3, 303 +/- 15, and 817 +/- 42 pg AVP/ml. Significant dose-dependent depression of coronary flow occurred at the three highest AVP concentrations; cardiac function was significantly depressed at the highest dose. The AVP analogue d(CH2)5[Tyr(Me)]AVP (20 ng/ml) completely reversed the cardiac effects attributed to AVP. The data indicate that AVP is a potent direct coronary constrictor that produces myocardial ischemia and decreased contractile function at AVP concentrations that are observed in some pathophysiologic states.(ABSTRACT TRUNCATED AT 250 WORDS)


1986 ◽  
Vol 251 (2) ◽  
pp. H364-H373 ◽  
Author(s):  
R. D. Goldfarb ◽  
L. M. Nightingale ◽  
P. Kish ◽  
P. B. Weber ◽  
D. J. Loegering

Our previous studies suggested that after a median lethal dose (LD50) of endotoxin, cardiac contractility was depressed in nonsurviving dogs. The canine cardiovascular system is unlike humans in that dogs have a hepatic vein sphincter that is susceptible to adrenergic stimulation capable of raising hepatic and splanchnic venous pressures. We retested the hypothesis that lethality after endotoxin administration is associated with cardiac contractile depression in pigs, because the hepatic circulation in this species is similar to that of humans. We compared cardiac mechanical function of pigs administered a high dose (250 micrograms/kg) or a low dose (100 micrograms/kg) endotoxin by use of the slope of the end-systolic pressure-diameter relationship (ESPDR) as well as other measurements of cardiac performance. In all the pigs administered a high dose, ESPDR demonstrated a marked, time-dependent depression, whereas we observed no significant ESPDR changes after low endotoxin doses. The other cardiodynamic variables were uninterpretable, due to the significant changes in heart rate, end-diastolic diameter (preload), and aortic diastolic pressure (afterload). Plasma myocardial depressant factor activity accumulated in all endotoxin-administered animals, tending to be greater in the high-dose group. In this group, both subendocardial blood flow and global function were depressed, whereas pigs administered the low dose of endotoxin demonstrated slight, but nonsignificant, increases in flow and function. These observations indicate that myocardial contractile depression is associated with a lethal outcome to high doses of endotoxin. One possible mechanism for this loss of contractile function may be a relative hypoperfusion of the subendocardium.


1993 ◽  
Vol 7 (3) ◽  
pp. 152-159 ◽  
Author(s):  
Shuji Yonekura ◽  
Kazufumi Tsuchihashi ◽  
Tomoaki Nakata ◽  
Nobuichi Hikita ◽  
Kazuhiko Nagao ◽  
...  

2011 ◽  
Vol 300 (3) ◽  
pp. H943-H950 ◽  
Author(s):  
Roland Vetter ◽  
Uwe Rehfeld ◽  
Christoph Reissfelder ◽  
Henry Fechner ◽  
Enn Seppet ◽  
...  

The sarco/endoplasmic reticulum (SR) Ca2+-ATPase SERCA2a has a key role in controlling cardiac contraction and relaxation. In hypothyroidism, decreased expression of the thyroid hormone (TH)-responsive SERCA2 gene contributes to slowed SR Ca2+ reuptake and relaxation. We investigated whether cardiac expression of a TH-insensitive SERCA2a cDNA minigene can rescue SR Ca2+ handling and contractile function in female SERCA2a-transgenic rats (TG) with experimental hypothyroidism. Wild-type rats (WT) and TG were rendered hypothyroid by 6- N-propyl-2-thiouracil treatment for 6 wk; control rats received no treatment. In vivo measured left ventricular (LV) hemodynamic parameters were compared with SERCA2a expression and function in LV tissue. Hypothyroidism decreased LV peak systolic pressure, dP/d tmax, and dP/d tmin in both WT and TG. However, loss of function was less in TG. Thus slowed relaxation in hypothyroidism was found to be 1.5-fold faster in TG compared with WT ( P < 0.05). In parallel, a 1.4-fold higher Vmax value of homogenate SR Ca2+ uptake was observed in hypothyroid TG ( P < 0.05 vs. hypothyroid WT), and the hypothyroidism-caused decline of LV SERCA2a mRNA expression in TG by −24% was markedly less than the decrease of −49% in WT ( P < 0.05). A linear relationship was observed between the SERCA2a/PLB mRNA ratio values and the Vmax values of SR Ca2+ uptake when the respective data of all experimental groups were plotted together ( r = 0.90). The data show that expression of the TH-insensitive SERCA2a minigene compensates for loss of expressional activity of the TH-responsive native SERCA2a gene in the female hypothyroid rat heart. However, SR Ca2+ uptake and in vivo heart function were only partially rescued.


Sign in / Sign up

Export Citation Format

Share Document