scholarly journals Endogenous osteopontin promotes ozone-induced neutrophil recruitment to the lungs and airway hyperresponsiveness to methacholine

2013 ◽  
Vol 305 (2) ◽  
pp. L118-L129 ◽  
Author(s):  
Ramon X. Barreno ◽  
Jeremy B. Richards ◽  
Daniel J. Schneider ◽  
Kevin R. Cromar ◽  
Arthur J. Nadas ◽  
...  

Inhalation of ozone (O3), a common environmental pollutant, causes pulmonary injury, pulmonary inflammation, and airway hyperresponsiveness (AHR) in healthy individuals and exacerbates many of these same sequelae in individuals with preexisting lung disease. However, the mechanisms underlying these phenomena are poorly understood. Consequently, we sought to determine the contribution of osteopontin (OPN), a hormone and a pleiotropic cytokine, to the development of O3-induced pulmonary injury, pulmonary inflammation, and AHR. To that end, we examined indices of these aforementioned sequelae in mice genetically deficient in OPN and in wild-type, C57BL/6 mice 24 h following the cessation of an acute (3 h) exposure to filtered room air (air) or O3 (2 parts/million). In wild-type mice, O3 exposure increased bronchoalveolar lavage fluid (BALF) OPN, whereas immunohistochemical analysis demonstrated that there were no differences in the number of OPN-positive alveolar macrophages between air- and O3-exposed wild-type mice. O3 exposure also increased BALF epithelial cells, protein, and neutrophils in wild-type and OPN-deficient mice compared with genotype-matched, air-exposed controls. However, following O3 exposure, BALF neutrophils were significantly reduced in OPN-deficient compared with wild-type mice. When airway responsiveness to inhaled acetyl-β-methylcholine chloride (methacholine) was assessed using the forced oscillation technique, O3 exposure caused hyperresponsiveness to methacholine in the airways and lung parenchyma of wild-type mice, but not OPN-deficient mice. These results demonstrate that OPN is increased in the air spaces following acute exposure to O3 and functionally contributes to the development of O3-induced pulmonary inflammation and airway and lung parenchymal hyperresponsiveness to methacholine.

2012 ◽  
Vol 113 (9) ◽  
pp. 1476-1485 ◽  
Author(s):  
Ming Zhu ◽  
Alison S. Williams ◽  
Lucas Chen ◽  
Allison P. Wurmbrand ◽  
Erin S. Williams ◽  
...  

The purpose of this study was to examine the role of tumor necrosis factor receptor 1 (TNFR1) in the airway hyperresponsiveness characteristic of obese mice. Airway responsiveness to intravenous methacholine was measured using the forced oscillation technique in obese Cpe fat mice that were either sufficient or genetically deficient in TNFR1 ( Cpe fat and Cpe fat/TNFR1−/− mice) and in lean mice that were either sufficient or genetically deficient in TNFR1 [wild-type (WT) and TNFR1−/− mice]. Compared with lean WT mice, Cpe fat mice exhibited airway hyperresponsiveness. Airway hyperresponsives was also greater in Cpe fat/TNFR1−/− than in Cpe fat mice. Compared with WT mice, Cpe fat mice had increases in bronchoalveolar lavage fluid concentrations of several inflammatory moieties including eotaxin, IL-9, IP-10, KC, MIG, and VEGF. These factors were also significantly elevated in Cpe fat/TNFR1−/− vs. TNFR1−/− mice. Additional moieties including IL-13 were also elevated in Cpe fat/TNFR1−/− vs. TNFR1−/− mice but not in Cpe fat vs. WT mice. IL-17A mRNA expression was greater in Cpe fat/TNFR1−/− vs. Cpe fat mice and in TNFR1−/− vs. WT mice. Analysis of serum indicated that obesity resulted in systemic as well as pulmonary inflammation, but TNFR1 deficiency had little effect on this systemic inflammation. Our results indicate that TNFR1 is protective against the airway hyperresponsiveness associated with obesity and suggest that effects on pulmonary inflammation may be contributing to this protection.


2019 ◽  
Vol 20 (20) ◽  
pp. 4989 ◽  
Author(s):  
Yoshinori Tanino ◽  
Xintao Wang ◽  
Takefumi Nikaido ◽  
Kenichi Misa ◽  
Yuki Sato ◽  
...  

Syndecan-4 is a transmembrane heparan sulfate proteoglycan expressed in a variety of cells, and its heparan sulfate glycosaminoglycan side chains bind to several proteins exhibiting various biological roles. The authors have previously demonstrated syndecan-4′s critical roles in pulmonary inflammation. In the current study, however, its role in pulmonary fibrosis was evaluated. Wild-type and syndecan-4-deficient mice were injected with bleomycin, and several parameters of inflammation and fibrosis were analyzed. The mRNA expression of collagen and α-smooth muscle action (α-SMA) in lung tissues, as well as the histopathological lung fibrosis score and collagen content in lung tissues, were significantly higher in the syndecan-4-deficient mice. However, the total cell count and cell differentiation in bronchoalveolar lavage fluid were equivalent between the wild-type and syndecan-4-deficient mice. Although there was no difference in the TGF-β expression in lung tissues between the wild-type and syndecan-4-deficient mice, significantly more activation of Smad3 in lung tissues was observed in the syndecan-4-deficient mice compared to the wild-type mice. Furthermore, in the in vitro experiments using lung fibroblasts, the co-incubation of syndecan-4 significantly inhibited TGF-β-induced Smad3 activation, collagen and α-SMA upregulation. Moreover, syndecan-4 knock-down by siRNA increased TGF-β-induced Smad3 activation and upregulated collagen and α-SMA expression. These findings showed that syndecan-4 inhibits the development of pulmonary fibrosis, at least in part, through attenuating TGF-β signaling.


2014 ◽  
Vol 307 (6) ◽  
pp. R621-R633 ◽  
Author(s):  
Paul H. Dahm ◽  
Jeremy B. Richards ◽  
Harry Karmouty-Quintana ◽  
Kevin R. Cromar ◽  
Sanjiv Sur ◽  
...  

Atopic, obese asthmatics exhibit airway obstruction with variable degrees of eosinophilic airway inflammation. We previously reported that mice obese as a result of a genetic deficiency in either leptin ( ob/ ob mice) or the long isoform of the leptin receptor ( db/ db mice) exhibit enhanced airway obstruction in the presence of decreased numbers of bronchoalveolar lavage fluid (BALF) eosinophils compared with lean, wild-type mice following antigen (ovalbumin; OVA) sensitization and challenge. To determine whether the genetic modality of obesity induction influences the development of OVA-induced airway obstruction and OVA-induced pulmonary inflammation, we examined indices of these sequelae in mice obese as a result of a genetic deficiency in carboxypeptidase E, an enzyme that processes prohormones and proneuropeptides involved in satiety and energy expenditure ( Cpe fat mice). Accordingly, Cpe fat and lean, wild-type (C57BL/6) mice were sensitized to OVA and then challenged with either aerosolized PBS or OVA. Compared with genotype-matched, OVA-sensitized and PBS-challenged mice, OVA sensitization and challenge elicited airway obstruction and increased BALF eosinophils, macrophages, neutrophils, IL-4, IL-13, IL-18, and chemerin. However, OVA challenge enhanced airway obstruction and pulmonary inflammation in Cpe fat compared with wild-type mice. These results demonstrate that OVA sensitization and challenge enhance airway obstruction in obese mice regardless of the genetic basis of obesity, whereas the degree of OVA-induced pulmonary inflammation is dependent on the genetic modality of obesity induction. These results have important implications for animal models of asthma, as modeling the pulmonary phenotypes for subpopulations of atopic, obese asthmatics critically depends on selecting the appropriate mouse model.


2010 ◽  
Vol 108 (6) ◽  
pp. 1812-1819 ◽  
Author(s):  
Richard A. Johnston ◽  
Ming Zhu ◽  
Christopher B. Hernandez ◽  
Erin S. Williams ◽  
Stephanie A. Shore

When compared with lean, wild-type mice, obese Cpe fat mice, 14 wk of age and older, manifest innate airway hyperresponsiveness (AHR) to intravenous methacholine and enhanced pulmonary inflammation following acute exposure to ozone (O3). The purpose of this study was to examine the onset of these augmented pulmonary responses during the onset of obesity. Thus airway responsiveness and O3-induced pulmonary inflammation and injury were examined in 7- and 10-wk-old Cpe fat and age-matched, wild-type, C57BL/6 mice. Compared with age-matched controls, 7- and 10-wk-old Cpe fat mice were approximately 25 and 61% heavier, respectively. Airway responsiveness to intravenous methacholine was assessed via forced oscillation in unexposed Cpe fat and wild-type mice. The 10- but not 7-wk-old Cpe fat mice exhibited innate AHR. O3 exposure (2 ppm for 3 h) increased markers of pulmonary inflammation and injury in the bronchoalveolar lavage fluid of all mice. However, most markers were greater in Cpe fat vs. wild-type mice, regardless of age. Serum levels of leptin, a satiety hormone and proinflammatory cytokine, were increased in Cpe fat vs. wild-type mice of both age groups, but the serum levels of other systemic inflammatory markers were greater only in 10-wk-old Cpe fat vs. wild-type mice. These results demonstrate that a 25% increase in body weight is sufficient to augment pulmonary responses to O3, but innate AHR is not manifest until the mice become much heavier. These results suggest that the mechanistic bases for these responses are different and may develop according to the nature and degree of the chronic systemic inflammation that is present.


2019 ◽  
Vol 316 (3) ◽  
pp. L407-L417 ◽  
Author(s):  
Naohiro Oda ◽  
Nobuaki Miyahara ◽  
Akihiko Taniguchi ◽  
Daisuke Morichika ◽  
Satoru Senoo ◽  
...  

Neuropeptide Y (NPY) is a neurotransmitter that is widely expressed in the brain and peripheral nervous system. Various immune cells express the NPY Y1 receptor. NPY modulates these cells via its Y1 receptor; however, involvement of NPY in the pathophysiology of bronchial asthma, particularly airway hyperresponsiveness (AHR), has not been defined. NPY-deficient and wild-type mice were intranasally sensitized and challenged to house dust mite (HDM) extract, and airway responses were monitored. After sensitization and challenge, NPY-deficient mice showed significantly lower AHR than wild-type mice, and numbers of eosinophils and levels of type 2 cytokines [interleukin (IL)-4, IL-5, and IL-13] in bronchoalveolar lavage fluid were significantly lower. Type 2 cytokine production from splenic mononuclear cells of HDM-sensitized mice was also significantly lower in NPY-deficient mice. Flow cytometry analysis showed that the number of CD4 T cells and CD11c+ antigen–presenting cells (APCs) was significantly lower in the lungs of NPY-deficient mice than in wild-type mice following sensitization and challenge. Significantly fewer CD11c+ APCs phagocytosed HDM in the mediastinal lymph nodes of NPY-deficient mice than in those of wild-type mice. Treatment with BIBO-3304, a NPY receptor antagonist, significantly suppressed development of HDM-induced AHR and inflammation in wild-type mice. These data identify an important contribution of NPY to allergen-induced AHR and inflammation through accumulation of dendritic cells in the airway and promotion of the type 2 immune response. Thus, manipulating NPY represents a novel therapeutic target to control allergic airway responses.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Silvie Kremserova ◽  
Tomas Perecko ◽  
Karel Soucek ◽  
Anna Klinke ◽  
Stephan Baldus ◽  
...  

Systemic inflammation accompanying diseases such as sepsis affects primarily lungs and induces their failure. This remains the most common cause of sepsis induced mortality. While neutrophils play a key role in pulmonary failure, the mechanisms remain incompletely characterized. We report that myeloperoxidase (MPO), abundant enzyme in neutrophil granules, modulates the course of acute pulmonary inflammatory responses induced by intranasal application of lipopolysaccharide. MPO deficient mice had significantly increased numbers of airway infiltrated neutrophils compared to wild-type mice during the whole course of lung inflammation. This was accompanied by higher levels of RANTES in bronchoalveolar lavage fluid from the MPO deficient mice. Other markers of lung injury and inflammation, which contribute to recruitment of neutrophils into the inflamed lungs, including total protein and other selected proinflammatory cytokines did not significantly differ in bronchoalveolar lavage fluid from the wild-type and the MPO deficient mice. Interestingly, MPO deficient neutrophils revealed a decreased rate of cell death characterized by phosphatidylserine surface expression. Collectively, the importance of MPO in regulation of pulmonary inflammation, independent of its putative microbicidal functions, can be potentially linked to MPO ability to modulate the life span of neutrophils and to affect accumulation of chemotactic factors at the inflammatory site.


2006 ◽  
Vol 130 (4) ◽  
pp. 440-446
Author(s):  
Jaime Chavez ◽  
Hays W. J. Young ◽  
David B. Corry ◽  
Michael W. Lieberman

Abstract Context.—During an asthmatic episode, leukotriene C4 (LTC4) and interleukin 13 (IL-13) are released into the airways and are thought to be central mediators of the asthmatic response. However, little is known about how these molecules interact or affect each other's signaling pathway. Objective.—To determine if the LTC4 and IL-13 signaling pathways interact with each other's pathways. Design.—We examined airway responsiveness, cysteinyl LTs (Cys-LTs), and Cys-LT and IL-13 receptor transcript levels in wild-type mice and in mice that were deficient in γ-glutamyl leukotrienase (an enzyme that converts LTC4 to LTD4), STAT6 (signal transducer and activator of transcription 6 [a critical molecule in IL-13 signaling]), and IL-4Rα (a subunit of the IL-13 receptor). Results.—Wild-type (C57BL/129SvEv) and γ-glutamyl leukotrienase–deficient mice showed increased airway responsiveness after intranasal instillation of IL-13; similar results were observed after intranasal instillation of IL-13 or LTC4 in a second wild-type strain (BALB/c). Interleukin 13 treatment reduced levels of Cys-LTs in bronchoalveolar lavage fluid. This change was unaccompanied by changes in other arachidonic acid metabolites or in RNA transcript levels of enzymes associated with Cys-LT synthesis. Interleukin 13 treatment also increased transcript levels of the Cys-LT 1 and Cys-LT 2 receptors, while LTC4 increased transcript levels of the α1 chain of the IL-13 receptor. Furthermore, IL-4Rα–deficient mice had increased airway responsiveness to LTC4 but not to IL-13, whereas STAT6-deficient mice failed to respond to either agonist. Conclusions.—These findings indicate that LTC4 and IL-13 are dependent on or signal through STAT6 to increase airway responsiveness and that both agonists regulate expression of each other's receptors.


2020 ◽  
Vol 27 (2) ◽  
pp. 108-116
Author(s):  
Hyelim Park ◽  
Ah-Yeoun Jung ◽  
Chung-Soon Chang ◽  
Young Hyo Kim

Background and Objectives: The immunomodulatory effects and mechanism of probiotics in allergic airway disease are largely unknown. We studied whether <i>Bacillus clausii</i> (BC), a probiotic derived from mudflats, had anti-allergic effects and compared the results with those of <i>Lactobacillus paracasei</i> (LP). We also examined whether the anti-allergic mechanisms of probiotics are associated with hypoxia signaling.Materials and Method: Forty-two BALB/c mice were randomly assigned to six experimental groups: controls, ovalbumin (OVA)-induced mice for inducing asthma, and OVA-induced mice that were orally administered LP or BC, at 1×10<sup>9</sup> or 5×10<sup>9</sup> CFU/mL each. We performed differential cell count testing on bronchoalveolar lavage fluid (BALF), lung histopathology, serum totals and OVA-specific IgE and IgG1 assessments, Th2 cytokine titers (IL-4, IL-5) in BALF and pulmonary parenchyma, quantitative PCR for <i>heme oxygenase (HO)-1</i> and <i>Hif-1α</i>, and immunohistochemistry.Results: Compared to the OVA group mice, OVA-sensitized mice treated with LP or BC showed significantly reduced numbers of eosinophils and neutrophils in the BALF (p<0.05). Both probiotics also significantly reduced pulmonary inflammation and eosinophil infiltration. Mice in the LP or BC group had a substantially lower titer of IL-4 and IL-5 in BALF, and decreased IL-4 and IL-5 expression in the lung parenchyma. Real-time PCR and immunohistochemistry showed that both LP and BC could significantly suppress <i>HO-1</i> and <i>Hif-1α</i> expression in asthmatic mice (p<0.05).Conclusion: BC can attenuate murine allergic asthma by regulating HIF-1α signaling, and its anti-allergic effect is comparable to that of LP.


2004 ◽  
Vol 287 (6) ◽  
pp. L1172-L1177 ◽  
Author(s):  
Shinsuke Murakami ◽  
Noritoshi Nagaya ◽  
Takefumi Itoh ◽  
Takafumi Fujii ◽  
Takashi Iwase ◽  
...  

C-type natriuretic peptide (CNP) has been shown to play an important role in the regulation of vascular tone and remodeling. However, the physiological role of CNP in the lung remains unknown. Accordingly, we investigated whether CNP infusion attenuates bleomycin (BLM)-induced pulmonary fibrosis in mice. After intratracheal injection of BLM or saline, mice were randomized to receive continuous infusion of CNP or vehicle for 14 days. CNP infusion significantly reduced the total number of cells and the numbers of macrophages, neutrophils, and lymphocytes in bronchoalveolar lavage fluid. Interestingly, CNP markedly reduced bronchoalveolar lavage fluid IL-1β levels. Immunohistochemical analysis demonstrated that CNP significantly inhibited infiltration of macrophages into the alveolar and interstitial regions. CNP infusion significantly attenuated BLM-induced pulmonary fibrosis, as indicated by significant decreases in Ashcroft score and lung hydroxyproline content. CNP markedly decreased the number of Ki-67-positive cells in fibrotic lesions of the lung, suggesting antiproliferative effects of CNP on pulmonary fibrosis. Kaplan-Meier survival curves demonstrated that BLM mice treated with CNP had a significantly higher survival rate than those given vehicle. These results suggest that continuous infusion of CNP attenuates BLM-induced pulmonary fibrosis and improves survival in BLM mice, at least in part by inhibition of pulmonary inflammation and cell proliferation.


2001 ◽  
Vol 194 (4) ◽  
pp. 551-556 ◽  
Author(s):  
Nicholas W. Lukacs ◽  
Dina M. Prosser ◽  
Maria Wiekowski ◽  
Sergio A. Lira ◽  
Donald N. Cook

Allergic asthmatic responses in the airway are associated with airway hyperreactivity, eosinophil accumulation in the lung, and cytokine production by allergen-specific, T helper cell type 2 (Th2) lymphocytes. Here, we show that in a cockroach antigen (CA) model of allergic pulmonary inflammation, the chemokine macrophage inflammatory protein (MIP)-3α is expressed in the lung within hours of allergen challenge. To determine the biologic relevance of this expression, mice lacking CCR6, the only known receptor for MIP-3α, were studied for their response to CA. CCR6-deficient mice were immunized to the same extent as their wild-type counterparts, as judged by cytokine production in antigen-challenged lymphocytes. However, compared with CA-challenged wild-type mice, challenged CCR6-deficient mice had reduced airway resistance, fewer eosinophils around the airway, lower levels of interleukin 5 in the lung, and reduced serum levels of immunoglobulin E. Together, these data demonstrate that MIP-3α and CCR6 function in allergic pulmonary responses and suggest that these molecules might represent novel therapeutic targets for treatment of asthma.


Sign in / Sign up

Export Citation Format

Share Document