Distinct patterns of leukocyte recruitment in the pulmonary microvasculature in response to local and systemic inflammation

2013 ◽  
Vol 304 (4) ◽  
pp. L298-L305 ◽  
Author(s):  
Yongzhi Wang ◽  
Jonas Roller ◽  
Jan E. Slotta ◽  
Su Zhang ◽  
Lingtao Luo ◽  
...  

The mechanisms of leukocyte recruitment in the pulmonary microvasculature in response to local and systemic inflammation remain elusive. Male C57BL/6 mice received lipopolysaccharide (LPS) intrapulmonary (intratracheally, it) or systemically (intravenously, iv) for 1–18 h. Leukocyte responses in lung were analyzed by use of intravital fluorescence microscopy. Plasma and lung levels of CXC chemokines as well as Mac-1 and F-actin expression in leukocytes and bronchoalveolar leukocytes were quantified. Venular leukocyte rolling was markedly increased in response to local LPS but only marginally after systemic LPS. Leukocyte adhesion in venules was enhanced in both groups although adhesion was higher in mice receiving LPS intratracheally compared with LPS intravenously. Systemic LPS caused more leukocytes trapping in capillaries compared with local LPS. The ratio of adherent leukocytes in venules compared with capillaries was higher in response to local LPS, suggesting that leukocytes were more prone to accumulate in venules in local inflammation and in capillaries in systemic inflammation. Systemic LPS triggered higher F-actin formation and Mac-1 expression in leukocytes compared with local LPS. Local and systemic LPS caused similar increases in CXC chemokines in the lung whereas intravenous endotoxin provoked higher levels of CXC chemokines in the circulation. Interestingly, intratracheal LPS increased recruitment of leukocytes in the alveolar space whereas intravenous LPS was ineffective in promoting leukocyte accumulation in the bronchoalveolar space. In conclusion, our data demonstrate that pulmonary microvascular recruitment of leukocytes differs in local and systemic inflammation, which might be related to premature activation and stiffening of circulating leukocytes in endotoxemia.

2007 ◽  
Vol 292 (4) ◽  
pp. H1876-H1882 ◽  
Author(s):  
Mizuko Osaka ◽  
Sumihiko Hagita ◽  
Mihoko Haraguchi ◽  
Mayumi Kajimura ◽  
Makoto Suematsu ◽  
...  

Wire injury of an artery has been recognized as a standard model of vascular inflammation and atherosclerosis; however, the mechanism of leukocyte recruitment has not been studied in this model. In this study, we documented the recruitment of leukocytes to the murine femoral artery after a wire injury. A transluminal mechanical injury was generated by insertion of a wire into the femoral artery of male C57BL/6J mice. The mice were anesthetized and ventilated after tracheotomy and protected from hypothermia by a warming lamp. Body temperature and blood pH did not significantly change during the experiment. The interaction between rhodamine 6G-labeled leukocytes and the injured femoral artery was monitored using an epifluorescent microscope, and the images were evaluated using a computer-assisted image analysis program. In the absence of injury, virtually no leukocyte adhesion was observed. In contrast, the number of adherent leukocytes increased 4 and 24 h after injury and declined 72 h after injury. The rolling flux of leukocytes increased 4 h after injury and remained high up to 7 days, but it was faster 72 h after injury. We identified another peak of leukocyte adhesion 7 days after injury. Injection of anti-P-selectin antibody significantly reduced leukocyte adhesion at the early and later phases. In conclusion, we have established a novel experimental system for direct observation of leukocyte recruitment to the injured femoral artery. Our system revealed a previously undetected, unique profile of leukocyte recruitment during vascular injury.


2001 ◽  
Vol 280 (2) ◽  
pp. G291-G297 ◽  
Author(s):  
Cameron W. Lush ◽  
Gediminas Cepinskas ◽  
William J. Sibbald ◽  
Peter R. Kvietys

In vitro, nitric oxide (NO) decreases leukocyte adhesion to endothelium by attenuating endothelial adhesion molecule expression. In vivo, lipopolysaccharide-induced leukocyte rolling and adhesion was greater in inducible NO synthase (iNOS)−/− mice than in wild-type mice. The objective of this study was to assess E- and P-selectin expression in the microvasculature of iNOS−/− and wild-type mice subjected to acute peritonitis by cecal ligation and perforation (CLP). E- and P-selectin expression were increased in various organs within the peritoneum of wild-type animals after CLP. This CLP-induced upregulation of E- and P-selectin was substantially reduced in iNOS−/− mice. Tissue myeloperoxidase (MPO) activity was increased to a greater extent in the gut of wild-type than in iNOS−/− mice subjected to CLP. In the lung, the reduced expression of E-selectin in iNOS−/− mice was not associated with a decrease in MPO. Our findings indicate that NO derived from iNOS plays an important role in sepsis-induced increase in selectin expression in the systemic and pulmonary circulation. However, in iNOS−/− mice, sepsis-induced leukocyte accumulation is affected in the gut but not in the lungs.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2245-2245
Author(s):  
Jungshan Chang ◽  
John Patton ◽  
Arun Sarkar ◽  
John L. Magnani ◽  
Paul S. Frenette

Abstract Previous studies using intravital microscopy in a sickle cell disease (SCD) mouse model (Berkeley) suggest that adherent leukocytes (WBCs) play a key role in vaso-occlusion by capturing circulating erythrocytes (RBCs) in venules. In addition, mice deficient in both P-and E-selectins are protected from vaso-occlusion (VOC) induced by surgical trauma and TNF-α stimulation, suggesting that targeting selectins or their ligands represents a potentially useful strategy. Selectins bind to specific sialylated and fucosylated carbohydrate structures presented by glycoprotein or glycolipid ligands. Here, we tested the effect of novel small glycomimetic selectin inhibitors, GMI-1070 and GMI-1077, on leukocyte behavior and sickle cell VOC. Berkeley SCD mouse bone marrow was transplantated into lethally irradiated C57BL/6 animals to generate age- and gender-matched genetically identical cohorts of SCD mice. Fully engrafted male SCD mice were treated with TNF-α and prepared for intravital microscopy examination of the cremaster muscle 90 min later. GMI-1070, GMI-1077 (both 20 mg/kg) or vehicle (PBS) were administered immediately prior to cytokine stimulation (t=0 min), and an additional dose was given at t=70min. Another group of mice was injected with antibodies against P-and E-selectins (PES, 1 mg/kg) as positive control. Several post-capillary and collecting venules were examined between t= 90min and t= 150min. Antibody blockade of endothelial selectins completely ablated leukocyte rolling, whereas GMI-1070 and GMI-1077 significantly increased the rolling flux fractions (PBS: 5.0±1.2 GMI-1070: 10.6±1.3%%; GMI-1077: 9.9±1.0%; p< 0.001). Furthermore GMI-1070 and GMI-1077 significantly reduced the recruitment of adherent leukocytes (914±172 and 1433±119 cells/mm2, respectively) compared to sickle mice injected with PBS control (2400±392 cells/mm2, p< 0.001). Although the reduction in leukocyte adhesion was not as marked as with anti-P and E-selectins (61±25 cells/mm2, p< 0.001), GMI-1070, in particular, dramatically inhibited the capture of sickle RBCs by adherent leukocytes (PBS: 0.9±0.4, GMI-1077: 0.6±0.2, GMI-1070: 0.07±0.05 and PES: 0.01±0.01 RBC interactions/WBC/min, p< 0.05) and markedly improved the blood flow in venules (PBS: 312±24, GMI-1077: 398±41, GMI-1070: 710±68 and PES: 683±75 nL/s, p< 0.001), to levels observed in non-sickle mice. The increased leukocyte rolling fluxes by these glycomimetics suggest that they inhibit E-selectin > P-selectin. Since the hallmark of E-selectin-mediated adhesion is the slow leukocyte rolling, we analyzed leukocyte rolling velocities in the various group and indeed found a 2-fold increase in rolling velocities in sickle mice treated with GMI-1070 compared to PBS control (PBS: 21±1 μm/s, GMI-1070: 38±1 μm/s, p<0.001). Consistent with these results, other studies using a parallel plate flow chamber (0.9 dynes/cm2) revealed that GMI-1070 was much more potent (1000-fold difference) in inhibiting the binding of human PMNs to TNF-α-stimulated (to induce E-selectin) endothelial cells (HUVEC) than with IL-4 and histamine stimulated HUVECs (to induce P-selectin). Further, competitive inhibition assays revealed that the IC50 of GMI-1070, relative to the standard glycyrrhizin, was much lower for E-selectin than P-selectin. These studies suggest that E-selectin-mediated adhesion/signaling may play a more important role than previously appreciated in the pathophysiology of SCD, and suggest that GMI-1070 may be beneficial for the treatment of sickle cell vaso-occlusion.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 290-290 ◽  
Author(s):  
Anil K. Chauhan ◽  
Janka Kiucka ◽  
Alexander Brill ◽  
Meghan T. Walsh ◽  
Denisa D. Wagner

Abstract von Willebrand factor (VWF) is synthesized in megakaryocytes and endothelial cells and stored in a-granules and Weibel-Palade bodies, respectively. VWF levels are elevated in both chronic and acute inflammation. ADAMTS13 (A D isintegrin-like A nd M etalloprotease with T hrombo s pondin type I repeats-13) is a metalloprotease that cleaves ultra large von Willebrand factor (ULVWF) multimers quickly after its release from endothelium. Recent studies have found that VWF promotes leukocyte adhesion in vitro and that ADAMTS13 activity is reduced in inflammation and sepsis. We hypothesized that by cleaving ULVWF multimers, ADAMTS13 not only inhibits thrombosis, but also attenuates leukocyte rolling and adhesion. Using intravital microscopy, we found more leukocyte rolling/min on the unstimulated veins in Adamts13-/- mice (Mean ± SE: 98 ± 16) compared to WT (Mean ± SE: 35 ± 6, P<0.001), n=18–20 from 10–11 mice per group. This process was dependent on VWF because the number of leukocytes rolling in Adamts13-/-/Vwf-/- veins was similar to that in Vwf-/-. Significantly increased soluble P-selectin and VWF concentrations were found in the plasma of Adamts13-/- compared to WT mice as quantitated by ELISA. In addition, endothelial P-selectin surface expression was increased in Adamts13-/- mice compared to WT. These results suggest elevated release of Weibel-Palade bodies in Adamts13-/- mice. Notably, circulating platelets were not activated in the absence of ADAMTS13. Upon stimulation of the mesentery with histamine, leukocyte rolling was slower in Adamts13-/- veins compared to WT. Furthermore, upon stimulation with the inflammatory cytokine TNF-alpha (i.v) 3.5 h prior to surgery, the number of leukocytes adhering/250 um was significantly increased in microvenules (diameter of 25–30 um) of Adamts13-/- mice (Mean ± SD: 21 ± 6) compared to WT (Mean ± SD: 12 ± 5, P<0.001), n=10–11 mice per group. This firm adhesion was also dependent on VWF because the number of adherent leukocytes in veins of Adamts13-/-/Vwf-/- was similar to Vwf-/-. Our studies indicate a crucial role for ADAMTS13 in preventing excessive spontaneous Weibel-Palade secretion and in attenuating leukocyte rolling and adhesion to ultra large VWF presented by endothelial cells during inflammation.


1994 ◽  
Vol 266 (2) ◽  
pp. H637-H642 ◽  
Author(s):  
J. P. Gaboury ◽  
D. C. Anderson ◽  
P. Kubes

Intravital microscopy was used to monitor leukocyte adherence, flux, rolling velocity, and number of rolling leukocytes (flux/velocity) in venules 25–40 microns in diameter. The superoxide-generating system, hypoxanthine and xanthine oxidase (HX/XO), was infused into the mesenteric circulation in untreated animals or in animals pretreated with either catalase (a hydrogen peroxide scavenger), WEB-2086 [a platelet-activating factor (PAF) receptor antagonist], or monoclonal antibodies directed against adhesion molecules CD18 (CL26) or P-selectin (PB1.3). HX/XO infusion caused a decrease in leukocyte rolling velocity and an increase in the number of rolling and adherent leukocytes. WEB-2086 prevented the increase in leukocyte adhesion and markedly increased leukocyte rolling velocity. PB1.3 abolished the HX/XO-associated rise in the flux of rolling leukocytes and proportionally decreased the number of adherent leukocytes. CL26 abolished HX/XO-induced leukocyte adhesion and also reduced the number of rolling leukocytes. In conclusion, P-selectin mediates the increased leukocyte flux induced by superoxide, whereas PAF and CD18 modulate leukocyte adhesion. PAF also reduces leukocyte rolling velocity, possibly as a result of CD18, but not P-selectin.


2004 ◽  
Vol 287 (1) ◽  
pp. G115-G124 ◽  
Author(s):  
Emile M. Rijcken ◽  
Mike G. Laukoetter ◽  
Christoph Anthoni ◽  
Stephanie Meier ◽  
Rudolf Mennigen ◽  
...  

Recruitment of circulating leukocytes into the colonic tissue is a key feature of intestinal inflammation. P-selectin glycoprotein ligand-1 (PSGL-1) and very late antigen-4 (VLA-4) are expressed on leukocytes and play an important role in leukocyte-endothelial cell adhesive interactions. We examined the effects of immunoneutralization of PSGL-1 and VLA-4 on leukocyte recruitment in vivo in the development and treatment of experimental colitis. Chronic colitis was induced in balb/c mice by oral administration of dextran sodium sulfate (DSS). Monoclonal antibodies 2PH1 (anti-PSGL-1) and PS/2 (anti-VLA-4) or the combination of both were injected intravenously, and leukocyte adhesion was observed for 60 min in colonic submucosal venules by intravital microscopy (IVM) under isoflurane/N2O anesthesia. In addition, mice with established colitis were treated by daily intraperitoneal injections of 2PH1, PS/2, or the combination of both over 5 days. Disease activity index (DAI), histology, and myeloperoxidase (MPO) levels were compared with sham-treated DSS controls. We found that 2PH1 reduced the number of rolling leukocytes (148.7 ± 29.8 vs. 36.9 ± 8.7/0.01 mm2/30 s, P < 0.05), whereas leukocyte velocity was increased (24.0 ± 3.6 vs. 127.8 ± 11.7 μm/s, P < 0.05). PS/2 reduced leukocyte rolling to a lesser extent. Leukocyte firm adhesion was not influenced by 2PH1 but was strongly reduced by PS/2 (24.1 ± 2 vs. 4.4 ± 0.9/0.01 mm2/30 s, P < 0.05). Combined application did not cause additional effects on leukocyte adhesion. Treatment of chronic colitis with 2PH1 or PS/2 reduced DAI, mucosal injury, and MPO levels significantly. Combined treatment led to a significantly better reduction of DAI (0.4 ± 0.1 vs. 2.1 ± 0.2 points) and histology (9.7 ± 0.9 vs. 21.4 ± 4.6 points). In conclusion, PSGL-1 and VLA-4 play an important role for leukocyte recruitment during intestinal inflammation. Therapeutic strategies designed to disrupt interactions mediated by PSGL-1 and/or VLA-4 may prove beneficial in treatment of chronic colitis.


2001 ◽  
Vol 193 (7) ◽  
pp. 863-872 ◽  
Author(s):  
Ali Hafezi-Moghadam ◽  
Kennard L. Thomas ◽  
Alyson J. Prorock ◽  
Yuqing Huo ◽  
Klaus Ley

The physiologic role of L-selectin shedding is unknown. Here, we investigate the effect of L-selectin shedding on firm adhesion and transmigration. In a tumor necrosis factor α–induced model of inflammation, inhibition of L-selectin shedding significantly increased firm adhesion and transmigration by a lymphocyte function–associated antigen (LFA)-1 and intercellular adhesion molecule (ICAM)-1–dependent mechanism. We examined the quality of leukocyte rolling and L-selectin–mediated signaling. Blockade of L-selectin shedding significantly reduced the “jerkiness” of leukocyte rolling, defined as the variability of velocity over time. A low level of jerkiness was also observed in the rolling of microbeads conjugated with L-selectin, a model system lacking the mechanism for L-selectin shedding. Inhibition of L-selectin shedding potentiated activation of LFA-1 and Mac-1 induced by L-selectin cross-linking as shown by activation epitope expression and binding of ICAM-1–conjugated beads. We conclude that inhibition of L-selectin shedding increases leukocyte adhesion and transmigration by (a) increasing leukocyte exposure to the inflamed endothelium by decreasing jerkiness and (b) promoting leukocyte activation by outside-in signaling. These observations help to resolve the apparent discrepancy between the minor contribution of L-selectin to rolling and the significant leukocyte recruitment defect in L-selectin knockout mice.


2001 ◽  
Vol 280 (2) ◽  
pp. H634-H641 ◽  
Author(s):  
S. Bradley Forlow ◽  
Klaus Ley

To study selectin-independent leukocyte recruitment and the role of intercellular adhesion molecule-1 (ICAM-1), we generated mice lacking all three selectins and ICAM-1 (E/P/L/I−/−) by bone marrow transplantation. These mice were viable and appeared healthy under vivarium conditions, although they showed a 97% reduction in leukocyte rolling, a 63% reduction in leukocyte firm adhesion, and a 99% reduction of neutrophil recruitment in a thioglycollate-induced model of peritonitis at 4 and 24 h. Mononuclear cell recruitment was almost unaffected. All residual leukocyte rolling and most leukocyte adhesion in these mice depended on α4-integrins, but a small number of leukocytes (6% of wild-type control) still became adherent in the absence of all known rolling mechanisms (E-, P-, L-selectin and α4-integrins). A striking similarity of leukocyte adhesion efficiency in E/P/L−/− and E/P/I−/− mice suggests a pathway in which leukocyte rolling through L-selectin requires ICAM-1 for adhesion and recruitment. Comparison of our data with mice lacking individual or other combinations of adhesion molecules reveal that elimination of more adhesion molecules further reduces leukocyte recruitment but the effect is less than additive.


1999 ◽  
Vol 277 (6) ◽  
pp. L1224-L1231 ◽  
Author(s):  
Alison Fox-Robichaud ◽  
Derrice Payne ◽  
Paul Kubes

Nitric oxide (NO), in addition to being a potent vasodilator, also prevents leukocyte adhesion in the microvasculature. Based on the antiadhesive properties of NO and work suggesting that NO is transported by proteins in the circulation, we tested the possibility that inhaled NO could impart antiadhesive effects in peripheral microvessels. We also determined the underlying mechanisms of actions. Three well-established models that induce local microvascular changes (either endothelium or leukocyte) were used. Hydrogen peroxide (H2O2; 100 μM) was superfused onto the cat mesentery to induce an endothelium-derived, P-selectin- and platelet-activating factor-dependent, oxidant-dependent leukocyte recruitment. In a second series of experiments, the cat mesentery was superfused with histamine (100 μM) to induce rapid endothelium-derived, P-selectin- and platelet-activating factor-dependent, oxidant-independent leukocyte recruitment. Finally, in a third series of experiments to target the leukocyte (but not the endothelium) directly in the periphery, the chemotactic molecule leukotriene B4 (20 nM) was superfused onto the cat mesentery. The above experiments were performed with and without cats breathing NO (80 parts/million). Intravital microscopy was used to visualize the mesenteric microcirculation. Inhaled NO reduced the increased leukocyte rolling and adhesion associated with H2O2superfusion of the feline mesentery via a cGMP-dependent mechanism. In contrast, inhaled NO had no effect on the histamine-induced increase in leukocyte rolling flux but partially inhibited the subsequent adhesion. The leukocyte chemotactic mediator leukotriene B4 induced a significant increase in leukocyte adhesion, but NO inhalation did not impair this chemotactically induced leukocyte recruitment. These data suggest that inhaled NO can reach the endothelium in the distal microvasculature and alter the response to an oxidative and a nonoxidative activator of endothelium but imparts no antiadhesive effect directly on circulating leukocytes.


2004 ◽  
Vol 200 (7) ◽  
pp. 835-846 ◽  
Author(s):  
Tracy Stokol ◽  
Peter O'Donnell ◽  
Ling Xiao ◽  
Sara Knight ◽  
George Stavrakis ◽  
...  

Inflammation induced by circulating immunoglobulin G–immune complexes (ICs) characterizes many immune-mediated diseases. In this work, the molecular requirements for the deposition of circulating ICs and subsequent acute leukocyte recruitment in mice were elucidated. We show that after intravenous injection, preformed soluble ICs are rapidly deposited in the postcapillary venules of the cremaster microcirculation, secondary to increased vascular permeability. This deposition is dependent on complement C1q. IC deposition is associated with leukocyte recruitment. Leukocyte rolling, which is mediated by P-selectin in the exteriorized cremaster muscle, is not further increased in response to ICs. In contrast, leukocyte rolling velocity is significantly decreased and leukocyte adhesion is significantly increased in the presence of ICs. The IC-mediated slow leukocyte rolling velocity and subsequent adhesion and emigration are dependent on Fcγ receptors (FcγRs), particularly FcγRIII, with complement C3 and C5 having no detectable role. These studies suggest a regulatory mechanism of IC deposition and leukocyte trafficking in IC-mediated inflammation requiring C1q and FcγRs in sequential, noninteracting roles.


Sign in / Sign up

Export Citation Format

Share Document