TNF-α inhibits SP-A gene expression in lung epithelial cells via p38 MAPK

2002 ◽  
Vol 283 (2) ◽  
pp. L418-L427 ◽  
Author(s):  
Olga L. Miakotina ◽  
Jeanne M. Snyder

Surfactant protein A (SP-A), the major lung surfactant-associated protein, mediates local defense against pathogens and modulates inflammation in the alveolus. Tumor necrosis factor (TNF)-α, a proinflammatory cytokine, inhibits SP-A gene expression in lung epithelial cells. Inhibitors of the phosphatidylinositol 3-kinase pathway, i.e., wortmannin, LY-294002, and rapamycin, did not block the inhibitory effects of TNF-α on SP-A mRNA levels. An inhibitor of the p44/42 mitogen-activated protein kinase (MAPK) pathway, PD-98059, was also ineffective. PD-169316 and SB-203580, inhibitors of p38 MAPK, blocked the TNF-α-mediated inhibition of SP-A mRNA levels. TNF-α increased the phosphorylation of p38 MAPK within 15 min. Anisomycin, an activator of p38 MAPK, increased p38 MAPK phosphorylation and decreased SP-A mRNA levels in a dose-dependent manner. Finally, TNF-α increased the phosphorylation of ATF-2, a transcription factor that is a p38 MAPK substrate. We conclude that TNF-α downregulates SP-A gene expression in lung epithelial cells via the p38 MAPK signal transduction pathway.

2012 ◽  
Vol 90 (5) ◽  
pp. 647-653 ◽  
Author(s):  
Zhen-Jun Shao ◽  
Xiao-Wei Zheng ◽  
Ting Feng ◽  
Juan Huang ◽  
Jian Chen ◽  
...  

Andrographis paniculata (Burm. f) Nees is a traditional herbal medicine for the treatment of infection and inflammation in China. Andrographolide (andro) is one of the major components. Human β-defensin-2 (hBD-2) is an inducible antimicrobial peptide that plays an important role in innate immunity. The present study aimed to investigate the effect of andro on upregulation of hBD-2 and the key signaling pathways involved in andro-induced hBD-2 expression. Real-time reverse transcription – PCR and Western blot assays showed that andro (1.0–10 µmol/L) can upregulate the expression of hBD-2 in a dose-dependent manner. Further studies suggested that hBD-2 mRNA and protein expression in responsive to andro were attenuated by pretreatment with SB203580 (an inhibitor of p38 mitogen-activated protein kinase (p38 MAPK)), MG-132 (an inhibitor of nuclear factor κB (NF-κB)), and an NF-κB activator inhibitor, but not by an inhibitor of ERK (PD98059) or by an inhibitor of JNK(SP600125). Moreover, we found that a second p38 MAPK inhibitor (SB202190) significantly blocked andro-mediated hBD-2 induction in SPC-A-1 lung epithelial cells. Finally, the p-c-Jun transcription factor activity assay also showed that AP-1 activity was induced by andro compared with the untreated group. We conclude that andro may exert its antimicrobial effects by upregulating the expression of hBD-2 through the p38 MAPK and NF-κB pathway.


2004 ◽  
Vol 287 (4) ◽  
pp. L764-L773 ◽  
Author(s):  
Loretta Sparkman ◽  
Vijayakumar Boggaram

Interleukin (IL)-8, a C-X-C chemokine, is a potent chemoattractant and an activator for neutrophils, T cells, and other immune cells. The airway and respiratory epithelia play important roles in the initiation and modulation of inflammatory responses via production of cytokines and surfactant. The association between elevated levels of nitric oxide (NO) and IL-8 in acute lung injury associated with sepsis, acute respiratory distress syndrome, respiratory syncytial virus infection in infants, and other inflammatory diseases suggested that NO may play important roles in the control of IL-8 gene expression in the lung. We investigated the role of NO in the control of IL-8 gene expression in H441 lung epithelial cells. We found that a variety of NO donors significantly induced IL-8 mRNA levels, and the increase in IL-8 mRNA was associated with an increase in IL-8 protein. NO induction of IL-8 mRNA was due to increases in IL-8 gene transcription and mRNA stability. NO induction of IL-8 mRNA levels was not inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and KT-5823, inhibitors of soluble guanylate cyclase and protein kinase G, respectively, and 8-bromo-cGMP did not increase IL-8 mRNA levels. This indicated that NO induces IL-8 mRNA levels independently of changes in the intracellular cGMP levels. NO induction of IL-8 mRNA was significantly reduced by inhibitors of extracellular regulated kinase and protein kinase C. IL-8 induction by NO was also reduced by hydroxyl radical scavengers such as dimethyl sulfoxide and dimethylthiourea, indicating the involvement of hydroxyl radicals in the induction process. NO induction of IL-8 gene expression could be a significant contributing factor in the initiation and induction of inflammatory response in the respiratory epithelium.


2003 ◽  
Vol 285 (3) ◽  
pp. L593-L601 ◽  
Author(s):  
Hong Hao ◽  
Christine H. Wendt ◽  
Gurpreet Sandhu ◽  
David H. Ingbar

Na+-K+-ATPase plays an essential role in active alveolar epithelial fluid resorption. In fetal and adult alveolar epithelial cells, glucocorticoids (GC) increase Na+-K+-ATPase activity and mRNA levels. We sought to define the mechanism of Na+-K+-ATPase gene upregulation by GC. In a rat alveolar epithelial cell line (RLE), dexamethasone (Dex) increased β1-subunit Na+-K+-ATPase mRNA expression two- to threefold within 3 h after exposure to the GC. The increased gene expression was due to increased transcription as demonstrated by nuclear run-on assays, whereas mRNA stability remained unchanged. Transient transfection of 5′ deletion mutants of a β1promoter-reporter construct demonstrated a 1.5- to 2.2-fold increase in promoter activity by Dex. All of the 5′ deletion constructs contained partial or palindromic GC regulatory elements (GRE) and responded to GC. The increased expression of promoter reporter was inhibited by RU-486, a GC receptor (GR) antagonist, suggesting the involvement of GR. The palindromic GRE at -631 demonstrated Dex induction in a heterologous promoter construct. Gel mobility shift assays using RLE nuclear extracts demonstrated specific binding to this site and the presence of GR. We conclude that GC directly stimulate transcription of Na+-K+-ATPase β1gene expression in adult rat lung epithelial cells through a GR-dependent mechanism that can act at multiple sites.


2004 ◽  
Vol 286 (6) ◽  
pp. L1210-L1219 ◽  
Author(s):  
Olga L. Miakotina ◽  
Jeanne M. Snyder

Surfactant protein A (SP-A), the most abundant pulmonary surfactant protein, plays a role in innate host defense and blocks the inhibitory effects of serum proteins on surfactant surface tension-lowering properties. SP-A mRNA and protein are downregulated by phorbol esters (TPA) via inhibition of gene transcription. We evaluated the TPA signaling pathways involved in SP-A inhibition in a lung cell line, H441 cells. TPA caused sustained phosphorylation of p44/42 mitogen-activated protein kinase (MAPK), p38 MAPK, and c-Jun-NH2-terminal kinase. An inhibitor of conventional and novel isoforms of protein kinase C (PKC) and two inhibitors of p44/42 MAPK kinase partially or completely blocked the inhibitory effects of TPA on SP-A mRNA levels. In contrast, inhibitors of conventional PKC-α and -β, stress-activated protein kinases, protein phosphatases, protein kinase A, and the phosphatidylinositol 3-kinase pathway had no effect on the TPA-mediated inhibition of SP-A mRNA. TPA also stimulated the synthesis of c-Jun mRNA and protein in a time-dependent manner. Inhibitors of the p44/42 MAPK signaling pathway and PKC blocked the TPA-mediated phosphorylation of p44/42 MAPK and the increase in c-Jun mRNA. We conclude that TPA inhibits SP-A gene expression via novel isoforms of PKC, the p44/42 MAPK pathway, and the activator protein-1 complex.


2002 ◽  
Vol 282 (2) ◽  
pp. L237-L248 ◽  
Author(s):  
L. A. Jiménez ◽  
E. M. Drost ◽  
P. S. Gilmour ◽  
I. Rahman ◽  
F. Antonicelli ◽  
...  

There is now considerable evidence for an association between the levels of particulate air pollution [particulate matter <10 μm in aerodynamic diameter (PM10)] and various adverse health endpoints. The release of proinflammatory mediators from PM10-exposed macrophages may be important in stimulating cytokine release from lung epithelial cells, thus amplifying the inflammatory response. A549 cells were treated with conditioned media from monocyte-derived macrophages stimulated with PM10, titanium dioxide (TiO2), or ultrafine TiO2. We demonstrate that only conditioned media from PM10-stimulated macrophages significantly increased nuclear factor-κB and activator protein-1 DNA binding, enhanced interleukin-8 (IL-8) mRNA levels as assessed by RT-PCR, and augmented IL-8 protein levels, over untreated controls. Furthermore, PM10-conditioned media also caused transactivation of IL-8 as determined by an IL-8-chloramphenicol acetyl transferase reporter. Analysis of these conditioned media revealed marked increases in tumor necrosis factor-α (TNF-α) and protein levels and enhanced chemotactic activity for neutrophils. Preincubation of conditioned media with TNF-α-neutralizing antibodies significantly reduced IL-8 production. These data suggest that PM10-activated macrophages may amplify the inflammatory response by enhancing IL-8 release from lung epithelial cells, in part, via elaboration of TNF-α.


2005 ◽  
Vol 79 (15) ◽  
pp. 10083-10087 ◽  
Author(s):  
Yee-Joo Tan ◽  
Puay-Yoke Tham ◽  
Daphne Z. L. Chan ◽  
Chih-Fong Chou ◽  
Shuo Shen ◽  
...  

ABSTRACT Here we analyzed the gene expression profile of cells that stably express the severe acute respiratory syndrome coronavirus (SARS-CoV) 3a protein to determine its effects on host functions. A lung epithelial cell-line, A549, was chosen for this study because the lung is the primary organ infected by SARS-CoV and fatalities resulted mainly from pulmonary complications. Our results showed that the expression of 3a up-regulates the mRNA levels of all three subunits, Aα, Bβ, and γ, of fibrinogen. Consequently, the intracellular levels as well as the secretion of fibrinogen were increased. We also observed increased fibrinogen levels in SARS-CoV-infected Vero E6 cells.


Sign in / Sign up

Export Citation Format

Share Document