Mixtures of synthetic peptides and dipalmitoylphosphatidylcholine as lung surfactants

1992 ◽  
Vol 262 (3) ◽  
pp. L292-L300
Author(s):  
L. R. McLean ◽  
J. L. Krstenansky ◽  
R. L. Jackson ◽  
K. A. Hagaman ◽  
K. A. Olsen ◽  
...  

Synthetic peptides that differ in their lipid-peptide interactions were combined with dipalmitoylphosphatidylcholine (DPPC) and tested in an adult rat lavaged lung model in vitro for efficacy as totally synthetic lung surfactants. The putative amphipathic alpha-helical region of the major lung surfactant apoprotein (SP-A81-102), an analogue with increased amphipathic alpha-helical potential ([Lys88,97,Glu99,Trp102]-SP-A81-102]), and the hydrophobic peptide gramicidin D were all ineffective. Three water-soluble lipid-binding peptides that contain amphipathic alpha-helical regions were also tested. Of these, only a 24-residue amphipathic alpha-helical peptide (18As) based on the lipid-binding sequences of the plasma apolipoproteins was effective. Melittin and glucagon were ineffective. Mixtures of 18As and DPPC also restored gas exchange in an in vivo lavaged guinea pig lung model to 90-95% of its prelavage value and maintained it for at least 3 h. Mixtures of DPPC and 18As are also surface active (gamma min less than 4 mN/m in the pulsating bubble). These data demonstrate the efficacy of a combination of a single lipid and a small, water-soluble, nonhemolytic, synthetic peptide containing an amphipathic alpha-helical structure and a sequence unrelated to any of the reported lung surfactant apoprotein sequences.

Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


2018 ◽  
Vol 18 (4) ◽  
pp. 365-371 ◽  
Author(s):  
Denis V. Mishchenko ◽  
Margarita E. Neganova ◽  
Elena N. Klimanova ◽  
Tatyana E. Sashenkova ◽  
Sergey G. Klochkov ◽  
...  

Background: Anti-tumor effect of hydroxamic acid derivatives is largely connected with its properties as efficient inhibitors of histone deacetylases, and other metalloenzymes involved in carcinogenesis. Objective: The work was aimed to (i) determine the anti-tumor and chemosensitizing activity of the novel racemic spirocyclic hydroxamic acids using experimental drug sensitive leukemia P388 of mice, and (ii) determine the structure-activity relationships as metal chelating and HDAC inhibitory agents. Method: Outbreed male rat of 200-220 g weights were used in biochemical experiments. In vivo experiments were performed using the BDF1 hybrid male mice of 22-24 g weight. Lipid peroxidation, Fe (II) -chelating activity, HDAC fluorescent activity, anti-tumor and anti-metastatic activity, acute toxicity techniques were used in this study. Results: Chemosensitizing properties of water soluble cyclic hydroxamic acids (CHA) are evaluated using in vitro activities and in vivo methods and found significant results. These compounds possess iron (II) chelating properties, and slightly inhibit lipid peroxidation. CHA prepared from triacetonamine (1a-e) are more effective Fe (II) ions cheaters, as compared to CHA prepared from 1- methylpiperidone (2a-e). The histone deacetylase (HDAC) inhibitory activity, lipophilicity and acute toxicity were influenced by the length amino acids (size) (Glycine < Alanine < Valine < Leucine < Phenylalanine). All compounds bearing spiro-N-methylpiperidine ring (2a-e) are non-toxic up to 1250 mg/kg dose, while compounds bearing spiro-tetramethylpiperidine ring (1a-e) exhibit moderate toxicity which increases with increasing lipophility, but not excite at 400 mg/kg. Conclusion: It was shown that the use of combination of non-toxic doses of cisplatin (cPt) or cyclophosphamide with CHA in most cases result in the appearance of a considerable anti-tumor effect of cytostatics. The highest chemosensitizing activity with respect to leukemia Р388 is demonstrated by the CHA derivatives of Valine 1c or 2c.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1110
Author(s):  
Kunal Jhunjhunwala ◽  
Charles W. Dobard ◽  
Sunita Sharma ◽  
Natalia Makarova ◽  
Angela Holder ◽  
...  

Receptive anal intercourse (RAI) contributes significantly to HIV acquisition underscoring the need to develop HIV prevention options for populations engaging in RAI practices. We explored the feasibility of formulating rectal suppositories with potent antiviral drugs for on-demand use. A fixed-dose combination of tenofovir (TFV) and elvitegravir (EVG) (40 mg each) was co-formulated in six different suppository bases (three fat- and three water-soluble). Fat-soluble witepsol H15 and water-soluble polyethylene glycol (PEG) based suppositories demonstrated favorable in vitro release and were advanced to assess in vivo pharmacokinetics following rectal administration in macaques. In vivo drug release profiles were similar for both suppository bases. Median concentrations of TFV and EVG detected in rectal fluids at 2 h were 1- and 2-logs higher than the in vitro IC50, respectively; TFV-diphosphate levels in rectal tissues met or exceeded those associated with high efficacy against rectal simian HIV (SHIV) exposure in macaques. Leveraging on these findings, a PEG-based suppository with a lower dose combination of tenofovir alafenamide (TAF) and EVG (8 mg each) was developed and found to achieve similar rectal drug exposures in macaques. This study establishes the utility of rectal suppositories as a promising on-demand strategy for HIV PrEP and supports their clinical development.


2021 ◽  
Vol 13 (1) ◽  
pp. 1943999
Author(s):  
Junyuan Luo ◽  
Zening Feng ◽  
Wentao Jiang ◽  
Xuelian Jiang ◽  
Yue Chen ◽  
...  

2020 ◽  
Vol 61 (1) ◽  
Author(s):  
Yeh-Lin Lu ◽  
Chia-Jung Lee ◽  
Shyr-Yi Lin ◽  
Wen-Chi Hou

Abstract Background The root major proteins of sweet potato trypsin inhibitors (SPTIs) or named sporamin, estimated for 60 to 80% water-soluble proteins, exhibited many biological activities. The human low-density lipoprotein (LDL) showed to form in vivo complex with endogenous oxidized alpha-1-antitrypsin. Little is known concerning the interactions between SPTIs and LDL in vitro. Results The thiobarbituric-acid-reactive-substance (TBARS) assays were used to monitor 0.1 mM Cu2+-mediated low-density lipoprotein (LDL) oxidations during 24-h reactions with or without SPTIs additions. The protein stains in native PAGE gels were used to identify the bindings between native or reduced forms of SPTIs or soybean TIs and LDL, or oxidized LDL (oxLDL). It was found that the SPTIs additions showed to reduce LDL oxidations in the first 6-h and then gradually decreased the capacities of anti-LDL oxidations. The protein stains in native PAGE gels showed more intense LDL bands in the presence of SPTIs, and 0.5-h and 1-h reached the highest one. The SPTIs also bound to the oxLDL, and low pH condition (pH 2.0) might break the interactions revealed by HPLC. The LDL or oxLDL adsorbed onto self-prepared SPTIs-affinity column and some components were eluted by 0.2 M KCl (pH 2.0). The native or reduced SPTIs or soybean TIs showed different binding capacities toward LDL and oxLDL in vitro. Conclusion The SPTIs might be useful in developing functional foods as antioxidant and nutrient supplements, and the physiological roles of SPTIs-LDL and SPTIs-oxLDL complex in vivo will investigate further using animal models.


Blood ◽  
1996 ◽  
Vol 87 (5) ◽  
pp. 1862-1872 ◽  
Author(s):  
M Introna ◽  
VV Alles ◽  
M Castellano ◽  
G Picardi ◽  
L De Gioia ◽  
...  

Abstract Pentraxins, which include C reactive protein (CRP) and serum amyloid P component (SAP), are prototypic acute phase reactants that serve as indicators of inflammatory reactions. Here we report genomic and cDNA cloning of mouse ptx3 (mptx3), a member of the pentraxin gene family and characterize its extrahepatic expression in vitro and in vivo. mptx3 is organized into three exons on chromosome 3: the first (43 aa) and second exon (175 aa) code for the signal peptide and for a protein portion with no high similarity to known sequences the third (203 aa) for a domain related to classical pentraxins, which contains the “pentraxin family signature.” Analysis of the N terminal portion predicts a predominantly alpha helical structure, while the pentraxin domain of ptx3 is accommodated comfortably in the tertiary structure fold of SAP. Normal and transformed fibroblasts, undifferentiated and differentiated myoblasts, normal endothelial cells, and mononuclear phagocytes express mptx3 mRNA and release the protein in vitro on exposure to interleukin-1beta (IL-1beta) and tumor necrosis factor (TNF)alpha. mptx3 was induced by bacterial lipopolysaccharide in vivo in a variety of organs and, most strongly, in the vascular endothelium of skeletal muscle and heart. Thus, mptx3 shows a distinct pattern of in vivo expression indicative of a significant role in cardiovascular and inflammatory pathology.


2008 ◽  
Vol 52 (10) ◽  
pp. 3492-3496 ◽  
Author(s):  
W. A. Craig ◽  
D. R. Andes

ABSTRACT Ceftobiprole medocaril is the parenteral prodrug of ceftobiprole, a novel pyrrolidinone broad-spectrum cephalosporin with in vitro and in vivo bactericidal activities against methicillin-resistant Staphylococcus aureus (MRSA) and penicillin-resistant Streptococcus pneumoniae (PRSP). We have used murine thigh and lung infection models in neutropenic and normal mice to characterize the in vivo pharmacokinetic (PK)-pharmacodynamic (PD) activities of ceftobiprole against multiple strains of S. aureus (including MRSA), S. pneumoniae (including PRSP), and gram-negative bacilli. Serum levels of ceftobiprole following the administration of multiple doses were determined by a microbiological assay. In vivo bactericidal activities and postantibiotic effects (PAEs) of ceftobiprole against MRSA and PRSP strains were determined from serial CFU/thigh values following single doses of ceftobiprole (40 and 160 mg/kg of body weight). Dose fractionation studies were used to determine which PK-PD index correlated best with activity. Magnitudes of the PK-PD indices were calculated from MICs and PK parameters. A sigmoid dose-response model was used to estimate the dose (mg/kg/24 h) required to achieve a static and 2-log10 kill effects over 24 h. PK results showed area under the concentration-time curve/dose values of 1.8 to 2.8 and half-lives of 0.29 to 0.51 h. MICs ranged from 0.015 to 2 μg/ml. Ceftobiprole demonstrated time-dependent killing; its in vivo PAEs varied from 3.8 h to 4.8 h for MRSA and from 0 to 0.8 h for PRSP. The time above MIC (T > MIC) correlated best with efficacy for both MRSA and PRSP. The T > MIC values required for the static doses were significantly longer (P < 0.001) for Enterobacteriaceae (36 to 45%) than for S. aureus (14 to 28%) and S. pneumoniae (15 to 22%). The drug showed activities in the lung model similar to those in the thigh model. The presence of neutrophils significantly enhanced the activity of ceftobiprole against S. pneumoniae but only slightly against Klebsiella pneumoniae. Based on its PD profile, ceftobiprole is a promising new β-lactam agent with activity against gram-negative and gram-positive organisms including MRSA and PRSP.


2008 ◽  
Vol 53 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Rahul P. Bakshi ◽  
Dongpei Sang ◽  
Andrew Morrell ◽  
Mark Cushman ◽  
Theresa A. Shapiro

ABSTRACT African trypanosomiasis (sleeping sickness), caused by protozoan Trypanosoma brucei species, is a debilitating disease that is lethal if untreated. Available drugs are antiquated, toxic, and compromised by emerging resistance. The indenoisoquinolines are a class of noncamptothecin topoisomerase IB poisons that are under development as anticancer agents. We tested a variety of indenoisoquinolines for their ability to kill T. brucei. Indenoisoquinolines proved trypanocidal at submicromolar concentrations in vitro. Structure-activity analysis yielded motifs that enhanced potency, including alkylamino substitutions on N-6, methoxy groups on C-2 and C-3, and a methylenedioxy bridge between C-8 and C-9. Detailed analysis of eight water-soluble indenoisoquinolines demonstrated that in trypanosomes the compounds inhibited DNA synthesis and acted as topoisomerase poisons. Testing these compounds on L1210 mouse leukemia cells revealed that all eight were more effective against trypanosomes than against mammalian cells. In preliminary in vivo experiments one compound delayed parasitemia and extended survival in mice subjected to a lethal trypanosome challenge. The indenoisoquinolines provide a promising lead for the development of drugs against sleeping sickness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. Autilio ◽  
M. Echaide ◽  
A. Cruz ◽  
C. Mouton ◽  
A. Hidalgo ◽  
...  

AbstractTherapeutic hypothermia (TH) enhances pulmonary surfactant performance in vivo by molecular mechanisms still unknown. Here, the interfacial structure and the composition of lung surfactant films have been analysed in vitro under TH as well as the molecular basis of its improved performance both under physiological and inhibitory conditions. The biophysical activity of a purified porcine surfactant was tested under slow and breathing-like dynamics by constrained drop surfactometry (CDS) and in the captive bubble surfactometer (CBS) at both 33 and 37 °C. Additionally, the temperature-dependent surfactant activity was also analysed upon inhibition by plasma and subsequent restoration by further surfactant supplementation. Interfacial performance was correlated with lateral structure and lipid composition of films made of native surfactant. Lipid/protein mixtures designed as models to mimic different surfactant contexts were also studied. The capability of surfactant to drastically reduce surface tension was enhanced at 33 °C. Larger DPPC-enriched domains and lower percentages of less active lipids were detected in surfactant films exposed to TH-like conditions. Surfactant resistance to plasma inhibition was boosted and restoration therapies were more effective at 33 °C. This may explain the improved respiratory outcomes observed in cooled patients with acute respiratory distress syndrome and opens new opportunities in the treatment of acute lung injury.


Sign in / Sign up

Export Citation Format

Share Document