Gas exchange kinetics in obese adolescents. Inferences on exercise tolerance and prescription

2010 ◽  
Vol 299 (5) ◽  
pp. R1298-R1305 ◽  
Author(s):  
Desy Salvadego ◽  
Stefano Lazzer ◽  
Carlo Busti ◽  
Raffaela Galli ◽  
Fiorenza Agosti ◽  
...  

A functional evaluation of skeletal muscle oxidative metabolism was performed in a group of obese adolescents (OB). The various components of pulmonary O2 uptake (V̇o2) kinetics were evaluated during 10-min constant-load exercises (CLE) on a cycloergometer at different percentages of V̇o2max. The relationships of these components with the gas exchange threshold (GET) were determined. Fourteen male OB [age 16.5 ± 1.0 (SD) yr, body mass index 34.5 ± 3.1 kg·m−2] and 13 normal-weight, age-matched nonathletic male volunteers (control group) were studied. The time-constant (τf) of the fundamental component and the presence, pattern, and relative amplitude of the slow component of V̇o2 kinetics were determined at 40, 60, and 80% of V̇o2max, previously estimated during an incremental test. V̇o2max (l/min) was similar in the two groups. GET was lower in OB (55.7 ± 6.7% of V̇o2max) than in control (65.1 ± 5.2%) groups. The τf was higher in OB subjects, indicating a slower fundamental component. At CLE 60% (above GET in OB subjects, below GET in control subjects) a slow component was observed in nine out of fourteen OB subjects, but none in the control group. All subjects developed a slow component at CLE 80% (above GET in both OB and control). Twelve OB subjects did not complete the 10-min CLE 80% due to voluntary exhaustion. In nine OB subjects, the slow component was characterized by a linear increase in V̇o2 as a function of time. The slope of this increase was inversely related to the time to exhaustion. The above findings should negatively affect exercise tolerance in obese adolescents and suggest an impairment of skeletal muscle oxidative metabolism. Also in obese adolescents, exercise evaluation and prescription at submaximal loads should be done with respect to GET and not at a given percentage of V̇o2max.

2010 ◽  
Vol 109 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Simone Porcelli ◽  
Mauro Marzorati ◽  
Francesca Lanfranconi ◽  
Paola Vago ◽  
Rado Pišot ◽  
...  

“Central” and “peripheral” limitations to oxidative metabolism during exercise were evaluated in 10 young males following a 35-day horizontal bed rest (BR). Incremental exercise (IE) and moderate- and heavy-intensity constant-load exercises (CLE) were carried out on a cycloergometer before and 1–2 days after BR. Pulmonary gas exchange, cardiac output (Q̇; by impedance cardiography), skeletal muscle (vastus lateralis), and brain (frontal cortex) oxygenation (by near-infrared spectroscopy) were determined. After BR, “peak” (values at exhaustion during IE) workload, peak O2 uptake (V̇o2peak), peak stroke volume, Q̇peak, and peak skeletal muscle O2 extraction were decreased (−18, −18, −22, −19, and −33%, respectively). The gas exchange threshold was ∼60% of V̇o2peak both before and after BR. At the highest workloads, brain oxygenation data suggest an increased O2 extraction, which was unaffected by BR. V̇o2 kinetics during CLE (same percentage of peak workload before and after BR) were slower (time constant of the “fundamental” component: 31.1 ± 2.0 s before vs. 40.0 ± 2.2 s after BR); the amplitude of the “slow component” was unaffected by BR, thus it would be greater, after BR, at the same absolute workload. A more pronounced “overshoot” of skeletal muscle O2 extraction during CLE was observed after BR, suggesting an impaired adjustment of skeletal muscle O2 delivery. The role of skeletal muscles in the impairment of oxidative metabolism during submaximal and maximal exercise after BR was identified. The reduced capacity of peak cardiovascular O2 delivery did not determine a “competition” for the available O2 between skeletal muscles and brain.


2018 ◽  
Vol 315 (3) ◽  
pp. R453-R460 ◽  
Author(s):  
Letizia Rasica ◽  
Simone Porcelli ◽  
Mauro Marzorati ◽  
Desy Salvadego ◽  
Alessandra Vezzoli ◽  
...  

Previous studies showed a higher O2 cost of exercise, and therefore, a reduced exercise tolerance in patients with obesity during constant work rate (CWR) exercise compared with healthy subjects. Among the ergogenic effects of dietary nitrate ([Formula: see text]) supplementation in sedentary healthy subjects, a reduced O2 cost and enhanced exercise tolerance have often been demonstrated. The aim of this study was to evaluate the effects of beetroot juice (BR) supplementation, rich in [Formula: see text], on physiological variables associated with exercise tolerance in adolescents with obesity. In a double-blind, randomized crossover study, 10 adolescents with obesity (8 girls, 2 boys; age = 16 ± 1 yr; body mass index = 35.2 ± 5.0 kg/m2) were tested after 6 days of supplementation with BR (5 mmol [Formula: see text] per day) or placebo (PLA). Following each supplementation period, patients carried out two repetitions of 6-min moderate-intensity CWR exercise and one severe-intensity CWR exercise until exhaustion. Plasma [Formula: see text] concentration was significantly higher in BR versus PLA (108 ± 37 vs. 15 ± 5 μM, P < 0.0001). The O2 cost of moderate-intensity exercise was not different in BR versus PLA (13.3 ± 1.7 vs. 12.9 ± 1.1 ml·min−1·W−1, P = 0.517). During severe-intensity exercise, signs of a reduced amplitude of the O2 uptake slow component were observed in BR, in association with a significantly longer time to exhaustion (561 ± 198 s in BR vs. 457 ± 101 s in PLA, P = 0.0143). In obese adolescents, short-term dietary [Formula: see text] supplementation is effective in improving exercise tolerance during severe-intensity exercise. This may prove to be useful in counteracting early fatigue and reduced physical activity in this at-risk population.


2004 ◽  
Vol 29 (2) ◽  
pp. 146-156 ◽  
Author(s):  
Xavier Nesi ◽  
Laurent Bosquet ◽  
Serge Berthoin ◽  
Jeanne Dekerle ◽  
Patrick Pelayo

The aim of this study was to evaluate the effect of a 15% increase in preferred pedal rate (PPR) on both time to exhaustion and pulmonary O2 uptake [Formula: see text] response during heavy exercise. Seven competitive cyclists underwent two constant-power tests (CPT) at a power output that theoretically requires 50% of the difference in [Formula: see text] between the second ventilatory threshold and [Formula: see text]max (PΔ50). Each cyclist cycled a CPT at PPR (CPTPPR) and a CPT at +15% of PPR (CPT+15%) in a randomized order. The average PPR value was 94 ± 4 rpm, and time to exhaustion was significantly longer in CPTPPR compared with CPT+15% (465 ± 139 vs. 303 ± 42 s, respectively; p = 0.01). A significant decrease in [Formula: see text] values in the first minutes of exercise and a significant increase in [Formula: see text] slow component was reported in CPT+15% compared with CPTPPR. These data indicate that the increase of 15% PPR was associated with a decrease in exercise tolerance and a specific [Formula: see text] response, presumably due to an increase of negative muscular work, internal work, and an altering of motor unit recruitment patterns. Key words: aerobic demand, cadence, cyclists, exercise tolerance, pedaling frequency


2010 ◽  
Vol 42 ◽  
pp. 25
Author(s):  
Bruno Grassi ◽  
Desy Salvadego ◽  
Stefano Lazzer ◽  
Carlo Busti ◽  
Raffaella Galli ◽  
...  

2011 ◽  
Vol 111 (6) ◽  
pp. 1719-1726 ◽  
Author(s):  
Desy Salvadego ◽  
Stefano Lazzer ◽  
Mauro Marzorati ◽  
Simone Porcelli ◽  
Enrico Rejc ◽  
...  

A functional evaluation of skeletal muscle oxidative metabolism during dynamic knee extension (KE) incremental exercises was carried out following a 35-day bed rest (BR) (Valdoltra 2008 BR campaign). Nine young male volunteers (age: 23.5 ± 2.2 yr; mean ± SD) were evaluated. Pulmonary gas exchange, heart rate and cardiac output (by impedance cardiography), skeletal muscle (vastus lateralis) fractional O2 extraction, and brain (frontal cortex) oxygenation (by near-infrared spectroscopy) were determined during incremental KE. Values at exhaustion were considered “peak”. Peak heart rate (147 ± 18 beats/min before vs. 146 ± 17 beats/min after BR) and peak cardiac output (17.8 ± 3.3 l/min before vs. 16.1 ± 1.8 l/min after BR) were unaffected by BR. As expected, brain oxygenation did not decrease during KE. Peak O2 uptake was lower after vs. before BR, both when expressed as liters per minute (0.99 ± 0.17 vs. 1.26 ± 0.27) and when normalized per unit of quadriceps muscle mass (46.5 ± 6.4 vs. 56.9 ± 11.0 ml·min−1·100 g−1). Skeletal muscle peak fractional O2 extraction, expressed as a percentage of the maximal values obtained during a transient limb ischemia, was lower after (46.3 ± 12.1%) vs. before BR (66.5 ± 11.2%). After elimination, by the adopted exercise protocol, of constraints related to cardiovascular O2 delivery, a decrease in peak O2 uptake and muscle peak capacity of fractional O2 extraction was found after 35 days of BR. These findings suggest a substantial impairment of oxidative function at the muscle level, “downstream” with respect to bulk blood flow to the exercising muscles, that is possibly at the level of blood flow distribution/O2 utilization inside the muscle, peripheral O2 diffusion, and intracellular oxidative metabolism.


2020 ◽  
Vol 15 (2) ◽  
pp. 278-284
Author(s):  
Nicola Giovanelli ◽  
Lea Biasutti ◽  
Desy Salvadego ◽  
Hailu K. Alemayehu ◽  
Bruno Grassi ◽  
...  

Purpose: To evaluate the effects of a trail-running race on muscle oxidative function by measuring pulmonary gas exchange variables and muscle fractional O2 extraction. Methods: Eighteen athletes were evaluated before (PRE) and after (POST) a trail-running competition of 32 or 50 km with 2000 or 3500 m of elevation gain, respectively. During the week before the race, runners performed an incremental uphill running test and an incremental exercise by utilizing a 1-leg knee extension ergometer. The knee extension exercise was repeated after the end of the race. During the knee extension test, the authors measured oxygen uptake () and micromolar changes in deoxygenated hemoglobin (Hb)+myoglobin (Mb) concentrations (Δ[deoxy(Hb+Mb)]) on vastus lateralis with a portable near-infrared spectroscopy. Results: was lower at POST versus PRE (−23.9% [9.0%]; P < .001). at POST was lower than at the same workload at PRE (−8.4% [15.6%]; P < .050). Peak power output and time to exhaustion decreased at POST by −23.7% (14.3%) and −18.3% (11.3%), respectively (P < .005). At POST, the increase of Δ[deoxy(Hb+Mb)] as a function of work rate, from unloaded to peak, was less pronounced (from 20.2% [10.1%] to 64.5% [21.1%] of limb ischemia at PRE to 16.9% [12.7%] to 44.0% [18.9%] at POST). Peak Δ[deoxy(Hb+Mb)] values were lower at POST (by −31.2% [20.5%]; P < .001). Conclusions: Trail running leads to impairment in skeletal muscle oxidative metabolism, possibly related to muscle damage from repeated eccentric contractions. In association with other mechanisms, the impairment of skeletal muscle oxidative metabolism is likely responsible for the reduced exercise capacity and tolerance during and following these races.


2008 ◽  
Vol 295 (1) ◽  
pp. R281-R289 ◽  
Author(s):  
Takatoshi Murase ◽  
Satoshi Haramizu ◽  
Noriyasu Ota ◽  
Tadashi Hase

Catechins, which are abundant in green tea, possess a variety of biologic actions, and their clinical application has been extensively investigated. In this study, we examined the effects of tea catechins and regular exercise on the aging-associated decline in physical performance in senescence-accelerated prone mice (SAMP1) and age-matched senescence-accelerated resistant mice (SAMR1). The endurance capacity of SAMR1 mice, measured as the running time to exhaustion, tended to increase over the 8-wk experimental period, whereas that of SAMP1 mice decreased by 17%. On the other hand, the endurance capacity of SAMP1 mice fed 0.35% (wt/wt) catechins remained at the initial level and was significantly higher than that of SAMP1 mice not fed catechins. In SAMP1 mice fed catechins and given exercise, oxygen consumption was significantly increased, and there was an increase in skeletal muscle fatty acid β-oxidation. The mRNA levels of mitochondria-related molecules, such as peroxisome proliferator-activated receptor-γ coactivator-1, cytochrome c oxidase-II, III, and IV in skeletal muscle were also higher in SAMP1 mice given both catechins and exercise. Moreover, oxidative stress measured as thiobarbituric reactive substances was lower in SAMP1 groups fed catechins than in the SAMP1 control group. These results suggest that long-term intake of catechins, together with habitual exercise, is beneficial for suppressing the aging-related decline in physical performance and energy metabolism and that these effects are due, at least in part, to improved mitochondrial function in skeletal muscle.


2014 ◽  
Vol 955-959 ◽  
pp. 537-540
Author(s):  
Lian Hai Jin ◽  
Xing Yu Zhao ◽  
Ying Xin Qin ◽  
Wen He Zhu ◽  
Zheng Li Luo

In the present study, we investigated the anti-fatigue activity in male Kunming mice with Soy isoflavones using a forced swimming test. Mice were divided into four groups (three Soy isoflavones administered groups and a control group). The control group was gavaged with distilled water and Soy isoflavones administered groups were gavaged with Soy isoflavones (10, 20 and 40mg/10g body weight /d). After four weeks, a forced swimming test was performed and the biochemical parameters related to fatigue were examined. The results suggested that Soy isoflavones could extend the swimming time to exhaustion of the mice. This indicated that Soy isoflavones had anti-fatigue activity and could elevate the exercise tolerance.


2012 ◽  
Vol 113 (7) ◽  
pp. 1101-1109 ◽  
Author(s):  
Simone Porcelli ◽  
Mauro Marzorati ◽  
Lorenzo Pugliese ◽  
Saverio Adamo ◽  
Julien Gondin ◽  
...  

A recent study has demonstrated that neuromuscular electrical stimulation (NMES) determines, in vitro, a fast-to-slow shift in the metabolic profile of muscle fibers. The aim of the present study was to evaluate if, in the same subjects, these changes would translate, in vivo, into an enhanced skeletal muscle oxidative metabolism. Seven young men were tested (cycle ergometer) during incremental exercises up to voluntary exhaustion and moderate and heavy constant-load exercises (CLE). Measurements were carried out before and after an 8-wk training program by isometric bilateral NMES (quadriceps muscles), which induced an ∼25% increase in maximal isometric force. Breath-by-breath pulmonary O2 uptake (V̇o2) and vastus lateralis oxygenation indexes (by near-infrared spectroscopy) were determined. Skeletal muscle fractional O2 extraction was estimated by near-infrared spectroscopy on the basis of changes in concentration of deoxygenated hemoglobin + myoglobin. Values obtained at exhaustion were considered “peak” values. The following functional evaluation variables were unaffected by NMES: peak V̇o2; gas exchange threshold; the V̇o2 vs. work rate relationship (O2 cost of cycling); changes in concentration of deoxygenated hemoglobin + myoglobin vs. work rate relationship (related to the matching between O2 delivery and V̇o2); peak fractional O2 extraction; V̇o2 kinetics (during moderate and heavy CLE) and the amplitude of its slow component (during heavy CLE). Thus NMES did not affect several variables of functional evaluation of skeletal muscle oxidative metabolism. Muscle hypertrophy induced by NMES could impair peripheral O2 diffusion, possibly counterbalancing, in vivo, the fast-to-slow phenotypic changes that were observed in vitro, in a previous work, in the same subjects of the present study.


2010 ◽  
Vol 109 (5) ◽  
pp. 1394-1403 ◽  
Author(s):  
Stephen J. Bailey ◽  
Paul G. Winyard ◽  
Anni Vanhatalo ◽  
Jamie R. Blackwell ◽  
Fred J. DiMenna ◽  
...  

It has recently been reported that dietary nitrate (NO3−) supplementation, which increases plasma nitrite (NO2−) concentration, a biomarker of nitric oxide (NO) availability, improves exercise efficiency and exercise tolerance in healthy humans. We hypothesized that dietary supplementation with l-arginine, the substrate for NO synthase (NOS), would elicit similar responses. In a double-blind, crossover study, nine healthy men (aged 19–38 yr) consumed 500 ml of a beverage containing 6 g of l-arginine (Arg) or a placebo beverage (PL) and completed a series of “step” moderate- and severe-intensity exercise bouts 1 h after ingestion of the beverage. Plasma NO2− concentration was significantly greater in the Arg than the PL group (331 ± 198 vs. 159 ± 102 nM, P < 0.05) and systolic blood pressure was significantly reduced (123 ± 3 vs. 131 ± 5 mmHg, P < 0.01). The steady-state O2 uptake (V̇o2) during moderate-intensity exercise was reduced by 7% in the Arg group (1.48 ± 0.12 vs. 1.59 ± 0.14 l/min, P < 0.05). During severe-intensity exercise, the V̇o2 slow component amplitude was reduced (0.58 ± 0.23 and 0.76 ± 0.29 l/min in Arg and PL, respectively, P < 0.05) and the time to exhaustion was extended (707 ± 232 and 562 ± 145 s in Arg and PL, respectively, P < 0.05) following consumption of Arg. In conclusion, similar to the effects of increased dietary NO3− intake, elevating NO bioavailability through dietary l-Arg supplementation reduced the O2 cost of moderate-intensity exercise and blunted the V̇o2 slow component and extended the time to exhaustion during severe-intensity exercise.


Sign in / Sign up

Export Citation Format

Share Document