scholarly journals Nicotine and the renin-angiotensin system

2018 ◽  
Vol 315 (5) ◽  
pp. R895-R906 ◽  
Author(s):  
Joshua M. Oakes ◽  
Robert M. Fuchs ◽  
Jason D. Gardner ◽  
Eric Lazartigues ◽  
Xinping Yue

Cigarette smoking is the single most important risk factor for the development of cardiovascular and pulmonary diseases (CVPD). Although cigarette smoking has been in constant decline since the 1950s, the introduction of e-cigarettes or electronic nicotine delivery systems 10 yr ago has attracted former smokers as well as a new generation of consumers. Nicotine is a highly addictive substance, and it is currently unclear whether e-cigarettes are “safer” than regular cigarettes or whether they have the potential to reverse the health benefits, notably on the cardiopulmonary system, acquired with the decline of tobacco smoking. Of great concern, nicotine inhalation devices are becoming popular among young adults and youths, emphasizing the need for awareness and further study of the potential cardiopulmonary risks of nicotine and associated products. This review focuses on the interaction between nicotine and the renin-angiotensin system (RAS), one of the most important regulatory systems on autonomic, cardiovascular, and pulmonary functions in both health and disease. The literature presented in this review strongly suggests that nicotine alters the homeostasis of the RAS by upregulating the detrimental angiotensin-converting enzyme (ACE)/angiotensin (ANG)-II/ANG II type 1 receptor axis and downregulating the compensatory ACE2/ANG-(1–7)/Mas receptor axis, contributing to the development of CVPD.

Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Jorge F Giani ◽  
Tea Djandjoulia ◽  
Nicholas Fetcher ◽  
Sebastien Fuchs ◽  
Dale M Seth ◽  
...  

Introduction: The responses to chronic angiotensin (Ang) II infusions of gene-targeted mice lacking kidney angiotensin-converting enzyme (ACE), in terms of intrarenal Ang II accumulation, hypertension, sodium and water retention are all blunted or absent. The objective of this study was to determine if these reduced responses were associated with changes in the intrarenal renin-angiotensin system (RAS). METHODS: Mice lacking intrarenal ACE (ACE10/10) were generated by targeted homologous recombination placing the expression of ACE only in macrophages. As a result, these mice have normal circulating ACE levels, but no kidney ACE. Wild-type (WT) mice of the same background (C57Bl/J) served as controls. Mice were subjected to sham-operation or subcutaneous infusion of Ang II for two weeks (n=6-10, 400 ng/kg/min via osmotic minipump). Mean arterial pressure (MAP) was followed by telemetry. At the end of the experiment, the kidneys were collected for analysis. Ang II content was measured by RIA. Renal abundance of ACE, angiotensinogen (AGT) and Ang II receptor type 1 (AT1R) were determined by Western Blot in total kidney homogenates. Results: At baseline, the MAP of WT and ACE 10/10 mice was similar 110 ± 4 mmHg vs. 109 ± 3 mmHg respectively (p>0.05). However, when subjected to chronic Ang II infusions, the hypertensive response was blunted in ACE 10/10 mice (129 ± 6 mmHg) vs. WT (146 ± 5 mmHg; P<0.05). Also, intrarenal Ang II accumulation was lower in ACE10/10 mice (724 ± 81 fmol/g) vs. WT (1130 ± 105 fmol/g, p<0.05). In non-treated mice, intrarenal RAS components analysis revealed that the absence of ACE in ACE10/10 mice was accompanied by a significant reduction in AGT (0.41 ± 0.06) and increased AT1R expression (1.32 ± 0.05) when compared to WT (normalized to 1.00, p<0.05 in both instances). Importantly, after chronic Ang II infusions, AGT, ACE and AT1R expression increased in WT (1.36, 1.26 and 1.17 fold increase respectively compared to non-treated WT, p<0.05) but not in the ACE10/10 mice (1.19, 1.06, 0.89 fold increase respectively compared to non-treated ACE10/10, p>0.05). Conclusion: The blunted hypertension and Ang II accumulation of mice devoid of kidney ACE in response to Ang II infusions is associated with a failed induction of renal AGT and the AT1R.


2007 ◽  
Vol 292 (5) ◽  
pp. H2523-H2531 ◽  
Author(s):  
Steven J. Miller ◽  
Laura E. Norton ◽  
Michael P. Murphy ◽  
Michael C. Dalsing ◽  
Joseph L. Unthank

Recent clinical and animal studies have shown that collateral artery growth is impaired in the presence of vascular risk factors, including hypertension. Available evidence suggests that angiotensin-converting enzyme inhibitors (ACEI) promote collateral growth in both hypertensive humans and animals; however, the specific mechanisms are not established. This study evaluated the hypothesis that collateral growth impairment in hypertension is mediated by excess superoxide produced by NAD(P)H oxidase in response to stimulation of the ANG II type 1 receptor. After ileal artery ligation, mesenteric collateral growth did not occur in untreated, young, spontaneously hypertensive rats. Significant luminal expansion occurred in collaterals of spontaneously hypertensive rats treated with the superoxide dismutase mimetic tempol, the NAD(P)H oxidase inhibitor apocynin, and the ACEI captopril, but not ANG II type 1 (losartan) or type 2 (PD-123319) receptor blockers. The ACEI enalapril produced equivalent reduction of arterial pressure as captopril but did not promote luminal expansion. This suggests the effects of captopril on collateral growth might result from its antioxidant properties. RT-PCR demonstrated that ANG II type 1 receptor and angiotensinogen expression was reduced in collaterals of untreated rats. This local suppression of the renin angiotensin system provides a potential explanation for the lack of effect of enalapril and losartan on collateral growth. The results demonstrate the capability of antioxidant therapies, including captopril, to reverse impaired collateral artery growth and the novel finding that components of the local renin angiotensin system are naturally suppressed in collaterals.


2015 ◽  
Vol 309 (5) ◽  
pp. R444-R458 ◽  
Author(s):  
Annette D. de Kloet ◽  
Meng Liu ◽  
Vermalí Rodríguez ◽  
Eric G. Krause ◽  
Colin Sumners

Despite tremendous research efforts, hypertension remains an epidemic health concern, leading often to the development of cardiovascular disease. It is well established that in many instances, the brain plays an important role in the onset and progression of hypertension via activation of the sympathetic nervous system. Further, the activity of the renin-angiotensin system (RAS) and of glial cell-mediated proinflammatory processes have independently been linked to this neural control and are, as a consequence, both attractive targets for the development of antihypertensive therapeutics. Although it is clear that the predominant effector peptide of the RAS, ANG II, activates its type-1 receptor on neurons to mediate some of its hypertensive actions, additional nuances of this brain RAS control of blood pressure are constantly being uncovered. One of these complexities is that the RAS is now thought to impact cardiovascular control, in part, via facilitating a glial cell-dependent proinflammatory milieu within cardiovascular control centers. Another complexity is that the newly characterized antihypertensive limbs of the RAS are now recognized to, in many cases, antagonize the prohypertensive ANG II type 1 receptor (AT1R)-mediated effects. That being said, the mechanism by which the RAS, glia, and neurons interact to regulate blood pressure is an active area of ongoing research. Here, we review the current understanding of these interactions and present a hypothetical model of how these exchanges may ultimately regulate cardiovascular function.


2014 ◽  
Vol 307 (1) ◽  
pp. H25-H32 ◽  
Author(s):  
Matthew J. Durand ◽  
Shane A. Phillips ◽  
Michael E. Widlansky ◽  
Mary F. Otterson ◽  
David D. Gutterman

Increased intraluminal pressure can reduce endothelial function in resistance arterioles; however, the mechanism of this impairment is unknown. The purpose of this study was to determine the effect of local renin-angiotensin system inhibition on the pressure-induced blunting of endothelium-dependent vasodilation in human adipose arterioles. Arterioles (100–200 μm) were dissected from fresh adipose surgical specimens, cannulated onto glass micropipettes, pressurized to an intraluminal pressure of 60 mmHg, and constricted with endothelin-1. Vasodilation to ACh was assessed at 60 mmHg and again after a 30-min exposure to an intraluminal pressure of 150 mmHg. The vasodilator response to ACh was significantly reduced in vessels exposed to 150 mmHg. Exposure of the vessels to the superoxide scavenger polyethylene glycol-SOD (100 U/ml), the ANG II type 1 receptor antagonist losartan (10−6 mol/l), or the angiotensin-converting enzyme inhibitor captopril (10−5 mol/l) prevented the pressure-induced reduction in ACh-dependent vasodilation observed in untreated vessels. High intraluminal pressure had no effect on papaverine-induced vasodilation or ANG II sensitivity. Increased intraluminal pressure increased dihydroethidium fluorescence in cannulated vessels, which could be prevented by polyethylene glycol-SOD or losartan treatment and endothelial denudation. These data indicate that high intraluminal pressure can increase vascular superoxide and reduce nitric oxide-mediated vasodilation via activation of the vascular renin-angiotensin system. This study provides evidence showing that the local renin-angiotensin system in the human microvasculature may be pressure sensitive and contribute to endothelial dysfunction after acute bouts of hypertension.


2010 ◽  
Vol 298 (1) ◽  
pp. F150-F157 ◽  
Author(s):  
Romer A. Gonzalez-Villalobos ◽  
Ryousuke Satou ◽  
Naro Ohashi ◽  
Laura C. Semprun-Prieto ◽  
Akemi Katsurada ◽  
...  

Angiotensin-converting enzyme (ACE) inhibition (ACEi) ameliorates the development of hypertension and the intrarenal ANG II augmentation in ANG II-infused mice. To determine if these effects are associated with changes in the mouse intrarenal renin-angiotensin system, the expression of angiotensinogen (AGT), renin, ACE, angiotensin type 1 receptor (AT1R) mRNA (by quanitative RT-PCR) and protein [by Western blot (WB) and/or immunohistochemistry (IHC)] were analyzed. C57BL/6J male mice (9–12 wk old) were distributed as controls ( n = 10), ANG II infused (ANG II = 8, 400 ng·kg−1·min−1 for 12 days), ACEi only (ACEi = 10, lisinopril, 100 mg/l), and ANG II infused + ACEi (ANG II + ACEi = 11). When compared with controls (1.00), AGT protein (by WB) was increased by ANG II (1.29 ± 0.13, P < 0.05), and this was not prevented by ACEi (ACEi + ANG II, 1.31 ± 0.14, P < 0.05). ACE protein (by WB) was increased by ANG II (1.21 ± 0.08, P < 0.05), and it was reduced by ACEi alone (0.88 ± 0.07, P < 0.05) or in combination with ANG II (0.80 ± 0.07, P < 0.05). AT1R protein (by WB) was increased by ANG II (1.27 ± 0.06, P < 0.05) and ACEi (1.17 ± 0.06, P < 0.05) but not ANG II + ACEi [1.15 ± 0.06, not significant (NS)]. Tubular renin protein (semiquantified by IHC) was increased by ANG II (1.49 ± 0.23, P < 0.05) and ACEi (1.57 ± 0.15, P < 0.05), but not ANG II + ACEi (1.10 ± 0.15, NS). No significant changes were observed in AGT, ACE, or AT1R mRNA. In summary, reduced responses of intrarenal tubular renin, ACE, and the AT1R protein to the stimulatory effects of chronic ANG II infusions, in the presence of ACEi, are associated with the effects of this treatment to ameliorate augmentations in blood pressure and intrarenal ANG II content during ANG II-induced hypertension.


2017 ◽  
Vol 18 (1) ◽  
pp. 147032031668933 ◽  
Author(s):  
Juliana Dias ◽  
Flavia Axelband ◽  
Lucienne S. Lara ◽  
Humberto Muzi-Filho ◽  
Adalberto Vieyra

Angiotensin-(3−4) (Ang-(3−4) or Val-Tyr) is the shorter angiotensin (Ang) II-derived peptide, formed through successive hydrolysis that culminates with the release of Val-Tyr as a dipeptide. It is formed both in plasma and in kidney from Ang II and Ang III, and can be considered a component of the systemic and organ-based renin–angiotensin system. It is potently antihypertensive in humans and rats, and its concerted actions on proximal tubule cells culminate in the inhibition of fluid reabsorption, hyperosmotic urinary excretion of Na+. At the renal cell signaling level, Ang-(3−4) counteracts Ang II-type 1 receptor-mediated responses by acting as an allosteric enhancer in Ang II-type 2 receptor populations that target adenosine triphosphate-dependent Ca2+ and Na+ transporters through a cyclic adenosine monophosphate-activated protein kinase pathway.


2015 ◽  
Vol 308 (4) ◽  
pp. R238-R249 ◽  
Author(s):  
Jeffrey P. Coble ◽  
Justin L. Grobe ◽  
Alan Kim Johnson ◽  
Curt D. Sigmund

It is critical for cells to maintain a homeostatic balance of water and electrolytes because disturbances can disrupt cellular function, which can lead to profound effects on the physiology of an organism. Dehydration can be classified as either intra- or extracellular, and different mechanisms have developed to restore homeostasis in response to each. Whereas the renin-angiotensin system (RAS) is important for restoring homeostasis after dehydration, the pathways mediating the responses to intra- and extracellular dehydration may differ. Thirst responses mediated through the angiotensin type 1 receptor (AT1R) and angiotensin type 2 receptors (AT2R) respond to extracellular dehydration and intracellular dehydration, respectively. Intracellular signaling factors, such as protein kinase C (PKC), reactive oxygen species (ROS), and the mitogen-activated protein (MAP) kinase pathway, mediate the effects of central angiotensin II (ANG II). Experimental evidence also demonstrates the importance of the subfornical organ (SFO) in mediating some of the fluid intake effects of central ANG II. The purpose of this review is to highlight the importance of the SFO in mediating fluid intake responses to dehydration and ANG II.


2020 ◽  
Vol 134 (11) ◽  
pp. 1259-1264 ◽  
Author(s):  
Katharina Lanza ◽  
Lucas G. Perez ◽  
Larissa B. Costa ◽  
Thiago M. Cordeiro ◽  
Vitria A. Palmeira ◽  
...  

Abstract The emergency of SARS-CoV-2 in China started a novel challenge to the scientific community. As the virus turns pandemic, scientists try to map the cellular mechanisms and pathways of SARS-CoV-2 related to the pathogenesis of Coronavirus Disease 2019 (Covid-19). After transmembrane angiotensin-converting enzyme 2 (ACE2) has been found to be SARS-CoV-2 receptor, we hypothesized an immune-hematological mechanism for Covid-19 based on renin–angiotensin system (RAS) imbalance to explain clinical, laboratory and imaging findings on disease course. We believe that exaggerated activation of ACE/Angiotensin II (Ang II)/Angiotensin Type 1 (AT1) receptor RAS axis in line with reduction of ACE2/Angiotensin-(1-7)/Mas receptor may exert a pivotal role in the pathogenesis of Covid-19. In this perspective, we discuss potential mechanisms and evidence on this hypothesis.


2021 ◽  
Author(s):  
Delaney Smith ◽  
Anita Layton

The renin-angiotensin system (RAS) plays a pivotal role in the maintenance of volume homeostasis and blood pressure. In addition to the well-studied systemic RAS, local RAS have been documented in various tissues, including the kidney. Given the role of the intrarenal RAS in the pathogenesis of hypertension, a role established via various pharmacologic and genetic studies, substantial efforts have been made to unravel the processes that govern intrarenal RAS activity. In particular, several mechanisms have been proposed to explain the rise in intrarenal angiotensin II (Ang II) that accompanies Ang II infusion, including increased angiotensin type 1 receptor (AT1R)-mediated uptake of Ang II and enhanced intrarenal Ang II production. However, experimentally isolating their contribution to the intrarenal accumulation of Ang II in Ang II--induced hypertension is challenging, given that they are fundamentally connected. Computational modelling is advantageous because the feedback underlying each mechanism can removed and the effect on intrarenal Ang II can be studied. In this work, the mechanisms governing the intrarenal accumulation of Ang II during Ang II infusion experiments are delineated and the role of the intrarenal RAS in Ang II-induced hypertension is studied. To accomplish this, a compartmental ODE model of the systemic and intrarenal RAS is developed and Ang II infusion experiments are simulated. Simulations indicate that AT1R-mediated uptake of Ang II is the primary mechanism by which Ang II accumulates in the kidney during Ang II infusion. Enhanced local Ang II production is unnecessary. The results demonstrate the role of the intrarenal RAS in the pathogenesis of Ang II-induced hypertension and consequently, clinical hypertension associated with an overactive RAS.


2006 ◽  
Vol 291 (2) ◽  
pp. H624-H630 ◽  
Author(s):  
Warren J. Cheung ◽  
Mary-Anne H. Kent ◽  
Esraa El-Shahat ◽  
Hongwei Wang ◽  
Junhui Tan ◽  
...  

Chronic subcutaneous infusion of ouabain causes hypertension via central pathways involving angiotensin type 1 (AT1) receptor stimulation. The present study assessed plasma and tissue ANG I and II levels as well as AT1 receptor and angiotensin-converting enzyme (ACE) mRNA levels and binding densities by real-time PCR and in vitro autoradiography in relevant brain nuclei and peripheral tissues (heart and kidney) in rats at 1 and/or 2 wk after start of ouabain infusion at 50 μg/day. After 2 wk (but not after 1 wk), blood pressures significantly increased (+15 mmHg). At 2 wk, plasma ANG I and II levels were markedly suppressed by ouabain. In contrast, in the heart and kidneys, ANG I levels were not affected, and ANG II levels tended to decrease, whereas in the hypothalamus ANG II content clearly increased. At 1 wk, no changes in ACE and AT1 receptor densities were seen. After 2 wk, there were significant decreases in AT1 receptor mRNA and densities in the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and paraventricular nucleus (PVN). ACE densities decreased only in the OVLT and SFO, but ACE mRNA showed more variable responses (decrease in OVLT vs. increase in PVN). In the kidneys, at 2 wk both AT1 receptor and ACE densities were decreased, but mRNA abundance did not change. The heart showed no significant changes. The increase in hypothalamic ANG II content and associated decreases in central AT1 receptor and ACE densities support the involvement of the brain renin-angiotensin system in the central hypertensive mechanism of action of ouabain.


Sign in / Sign up

Export Citation Format

Share Document