Diurnal protein expression in blood revealed by high throughput mass spectrometry proteomics and implications for translational medicine and body time of day

2007 ◽  
Vol 293 (3) ◽  
pp. R1430-R1437 ◽  
Author(s):  
Tami A. Martino ◽  
Nazneen Tata ◽  
Georg A. Bjarnason ◽  
Marty Straume ◽  
Michael J. Sole

Molecular gene cycling is useful for determining body time of day (BTOD) with important applications in personalized medicine, including cardiovascular disease and cancer, our leading causes of death. However, it impractically requires repetitive invasive tissue sampling that is obviously not applicable for humans. Here we characterize diurnal protein cycling in blood using high-throughput proteomics; blood proteins are easily accessible, minimally invasive, and can importantly serve as surrogates for what is happening elsewhere in the body in health and disease. As proof of the concept, we used normal C57BL/6 mice maintained under regular 24-h light and dark cycles. First, we demonstrated fingerprint patterns in 24-h plasma, revealed using surface-enhanced laser desorption and ionization (SELDI). Second, we characterized diurnal cycling proteins in blood using chromatography and tandem electrospray ionization mass spectrometry. Importantly, we noted little association between the cycling blood proteome and tissue transcriptome, delineating the necessity to identify de novo cycling proteins in blood for measuring BTOD. Furthermore, we explored known interaction networks to identify putative functional pathways regulating protein expression patterns in blood, thus shedding new light on our understanding of integrative physiology. These studies have profound clinical significance in translating the concept of BTOD to the practical realm for molecular diagnostics and open new opportunities for clinically relevant discoveries when applied to ELISA-based molecular testing and/or point-of-care devices.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Tyler J. Mason ◽  
Harmonie M. Bettenhausen ◽  
Jacqueline M. Chaparro ◽  
Mark E. Uchanski ◽  
Jessica E. Prenni

AbstractHorticulturists are interested in evaluating how cultivar, environment, or production system inputs can affect postharvest quality. Ambient mass spectrometry approaches enable analysis of minimally processed samples under ambient conditions and offer an attractive high-throughput alternative for assessing quality characteristics in plant products. Here, we evaluate direct analysis in real time (DART-MS) mass spectrometry and rapid evaporative ionization-mass spectrometry (REIMS) to assess quality characteristics in various pepper (Capsicum annuum L.) cultivars. DART-MS exhibited the ability to discriminate between pod colors and pungency based on chemical fingerprints, while REIMS could distinguish pepper market class (e.g., bell, lunchbox, and popper). Furthermore, DART-MS analysis resulted in the putative detection of important bioactive compounds in human diet such as vitamin C, p-coumaric acid, and capsaicin. The results of this study demonstrate the potential for these approaches as accessible and reliable tools for high throughput screening of pepper quality.


2021 ◽  
pp. 247255522110006
Author(s):  
Michael D. Scholle ◽  
Zachary A. Gurard-Levin

Arginase-1, an enzyme that catalyzes the reaction of L-arginine to L-ornithine, is implicated in the tumor immune response and represents an interesting therapeutic target in immuno-oncology. Initiating arginase drug discovery efforts remains a challenge due to a lack of suitable high-throughput assay methodologies. This report describes the combination of self-assembled monolayers and matrix-assisted laser desorption ionization mass spectrometry to enable the first label-free and high-throughput assay for arginase activity. The assay was optimized for kinetically balanced conditions and miniaturized, while achieving a robust assay (Z-factor > 0.8) and a significant assay window [signal-to-background ratio > 20] relative to fluorescent approaches. To validate the assay, the inhibition of the reference compound nor-NOHA (Nω-hydroxy-nor-L-arginine) was evaluated, and the IC50 measured to be in line with reported results (IC50 = 180 nM). The assay was then used to complete a screen of 175,000 compounds, demonstrating the high-throughput capacity of the approach. The label-free format also eliminates opportunities for false-positive results due to interference from library compounds and optical readouts. The assay methodology described here enables new opportunities for drug discovery for arginase and, due to the assay flexibility, can be more broadly applicable for measuring other amino acid–metabolizing enzymes.


2017 ◽  
Vol 22 (10) ◽  
pp. 1246-1252 ◽  
Author(s):  
Kishore Kumar Jagadeesan ◽  
Simon Ekström

Recently, mass spectrometry (MS) has emerged as an important tool for high-throughput screening (HTS) providing a direct and label-free detection method, complementing traditional fluorescent and colorimetric methodologies. Among the various MS techniques used for HTS, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides many of the characteristics required for high-throughput analyses, such as low cost, speed, and automation. However, visualization and analysis of the large datasets generated by HTS MALDI-MS can pose significant challenges, especially for multiparametric experiments. The datasets can be generated fast, and the complexity of the experimental data (e.g., screening many different sorbent phases, the sorbent mass, and the load, wash, and elution conditions) makes manual data analysis difficult. To address these challenges, a comprehensive informatics tool called MALDIViz was developed. This tool is an R-Shiny-based web application, accessible independently of the operating system and without the need to install any program locally. It has been designed to facilitate easy analysis and visualization of MALDI-MS datasets, comparison of multiplex experiments, and export of the analysis results to high-quality images.


2016 ◽  
Vol 88 (1) ◽  
pp. 281-292 ◽  
Author(s):  
CHARLENE S.C. GARCIA ◽  
CAROLINE MENTI ◽  
ANA PAULA F. LAMBERT ◽  
THIAGO BARCELLOS ◽  
SIDNEI MOURA ◽  
...  

ABSTRACT Salvia officinalis (Lamiaceae) has been used in south of Brazil as a diary homemade, in food condiment and tea-beverage used for the treatment of several disorders. The objective of this study was to characterize chemical compounds in the hydroalcoholic (ExtHS) and aqueous (ExtAS) extract from Salvia officinalis (L.) by gas chromatography-mass spectrometry (GC-MS) and by high-resolution electrospray ionization mass spectrometry (ESI-QTOF MS/MS), evaluate in vitro ability to scavenge the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), catalase (CAT-like) and superoxide dismutase (SOD-like) activity, moreover cytotoxic by MTT assay, alterations on cell morphology by giemsa and apoptotic-induced mechanism for annexin V/propidium iodide. Chemical identification sage extracts revealed the presence of acids and phenolic compounds. In vitro antioxidant analysis for both extracts indicated promising activities. The cytotoxic assays using tumor (Hep-2, HeLa, A-549, HT-29 and A-375) and in non-tumor (HEK-293 and MRC-5), showed selectivity for tumor cell lines. Immunocytochemistry presenting a majority of tumor cells at late stages of the apoptotic process and necrosis. Given the results presented here, Brazilian Salvia officinalis (L.) used as condiment and tea, may protect the body against some disease, in particularly those where oxidative stress is involved, like neurodegenerative disorders, inflammation and cancer.


Talanta ◽  
2018 ◽  
Vol 182 ◽  
pp. 241-246 ◽  
Author(s):  
Zhongquan Li ◽  
Fang Zhang ◽  
Junbo Zhao ◽  
Xiaopan Liu ◽  
Xiuping Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document