Effect of electroacupuncture on pressor reflex during gastric distension

2002 ◽  
Vol 283 (6) ◽  
pp. R1335-R1345 ◽  
Author(s):  
Peng Li ◽  
Kasra Rowshan ◽  
Melissa Crisostomo ◽  
Stephanie C. Tjen-A-Looi ◽  
John C. Longhurst

The effect of electroacupuncture (EA) on the reflex cardiovascular response induced by mechanical distension of the stomach was studied in ventilated male Sprague-Dawley rats anesthetized by ketamine and α-chloralose. Repeated balloon inflation of the stomach to produce 20 mmHg tension on the gastric wall induced a consistent rise in mean arterial pressure, while heart rate (372 ± 22 beats/min) was unchanged. This response was reversed by transection of the splanchnic nerves. Bilateral application of EA (1–2 mA, 2 Hz) at Neiguan-Jianshi acupoints (pericardial meridian, Pe 5–6) over the median nerve for 30 min significantly decreased the pressor response from 33 ± 6 to 18 ± 4 mmHg ( n = 7, P < 0.05). This effect began after 10 min of EA and continued for 40 min after termination of EA. EA at Zusanli-Shangquxu acupoints (stomach meridian, St 36–37) over the deep peroneal nerve similarly inhibited the pressor response. The effect lasted for 10 min after EA was stopped ( n = 6, P < 0.05), while EA at Guangming-Xuanzhong acupoints (gallbladder meridian, GB 37–39) over the superficial peroneal nerve did not inhibit the pressor response. Naloxone injected intravenously ( n = 6) immediately after termination of EA or administered by microinjection into the rostral ventrolateral medulla (rVLM) 25 min after initiation of EA ( n = 6) reversed the inhibition by EA, suggesting an opiate mechanism, including the rVLM, was involved.

2005 ◽  
Vol 98 (3) ◽  
pp. 872-880 ◽  
Author(s):  
Wei Zhou ◽  
Liang-Wu Fu ◽  
Stephanie C. Tjen-A-Looi ◽  
Peng Li ◽  
John C. Longhurst

Despite the use of acupuncture to treat a number of heart diseases, little is known about the mechanisms that underlie its actions. Therefore, we examined the influence of acupuncture on sympathoexcitatory cardiovascular responses to gastric distension in anesthetized Sprague-Dawley rats. Thirty minutes of low-current, low-frequency, (0.3–0.5 mA, 2 Hz) electroacupuncture (EA), at P 5–6, S 36–37, and H 6–7 overlying the median, deep peroneal, and ulnar nerves significantly decreased reflex pressor responses by 40, 39, and 44%, respectively. In contrast, sham acupuncture involving needle insertion without stimulation at P 5–6 or 30 min of EA at LI 6–7 acupoints overlying the superficial radial nerve did not attenuate the reflex. Similarly, EA at P 5–6 using 40- or 100-Hz stimulation frequencies did not inhibit the reflex. Compared with EA at P 5–6, EA at two sets of acupoints, including P 5–6 and S 36–37, did not lead to larger inhibition of the reflex. Two minutes of manual acupuncture (MA; 2 Hz) at P 5–6 every 10 min for 30 min inhibited the reflex cardiovascular pressor response by 33%, a value not significantly different from 2-Hz EA at P 5–6. Single-unit afferent activity was not different between electrical stimulation (ES) and manual stimulation. However, 2-Hz ES activated more somatic afferents than 10- or 20-Hz ES. These data suggest that, although the location of acupoint stimulation and the frequency of stimulation determine the extent of influence of EA, there is little difference between low-frequency EA and MA at P 5–6. Furthermore, simultaneous stimulation using two acupoints that independently exert strong effects did not lead to an additive or a facilitative interaction. The similarity of the responses to EA and MA and the lack of cardiovascular response to high-frequency EA appear to be largely a function of somatic afferent responses.


2005 ◽  
Vol 98 (6) ◽  
pp. 2056-2063 ◽  
Author(s):  
Melissa M. Crisostomo ◽  
Peng Li ◽  
Stephanie C. Tjen-A-Looi ◽  
John C. Longhurst

Electroacupuncture (EA) at Neiguan-Jianshi acupoints through an opioid mechanism inhibits the cardiovascular pressor response induced by mechanical stimulation of the stomach. Because nociceptin also may regulate cardiovascular activity through its action in the brain stem, we hypothesized that this neuromodulator serves a role in the EA-related inhibitory effect. Blood pressure in ventilated male Sprague-Dawley rats (400–600 g) anesthetized by ketamine and α-chloralose was measured during balloon inflation of the stomach. Gastric distension with 6–8 ml of air induced consistent pressor reflexes of 26 ± 1 mmHg that could be repeated every 10 min for 100 min. When nociceptin (10 nM) was microinjected into the rostral ventrolateral medulla (rVLM), the pressor response induced by gastric distension was inhibited by 68 ± 6%. Thirty minutes of EA also decreased the reflex response by 75 ± 11%; microinjection of saline into the rVLM did not alter the inhibitory effect of EA. In contrast, microinjection of a nociceptin receptor antagonist into the rVLM promptly reversed the EA response. Pretreatment with the opioid receptor antagonist naloxone did not influence the EA-like inhibitory effect of nociceptin on the distension-induced pressor reflex (22 ± 1 to 8 ± 2 mmHg). Furthermore, a μ-opioid receptor agonist microinjected into the rVLM after microinjection of a nociceptin receptor antagonist during EA promptly reversed the nociceptin receptor antagonist-related inhibition of the EA effect. Thus, in addition to the classical opioid system, nociceptin, through opioid receptor-like-1 receptor stimulation in the rVLM, participates in the modulatory influence of EA on reflex-induced increases in blood pressure.


1998 ◽  
Vol 274 (4) ◽  
pp. R1119-R1124 ◽  
Author(s):  
Shogo Sesoko ◽  
Hiromi Muratani ◽  
Masanobu Yamazato ◽  
Hiroshi Teruya ◽  
Shuichi Takishita ◽  
...  

The inhibitory action of α2-agonists on the cardiovascular neurons has been elucidated in the rostral ventrolateral medulla (RVLM) but not in the caudal ventrolateral medulla (CVLM). Our study aimed to clarify whether microinjection of clonidine into the CVLM elicits any cardiovascular effect and whether endogenous α2-adrenoceptor-mediated mechanisms contribute to the tonic activity of the CVLM neurons. In male Sprague-Dawley rats (7–9 wk old, 270–320 g) anesthetized with urethan, unilateral microinjection of 8 nmol of clonidine into the CVLM ( n = 10) increased mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) by 12.1 ± 1.8 mmHg (mean ± SE, P < 0.01) and 25.8 ± 4.8% ( P < 0.01), while heart rate (HR) remained unaltered. Unilateral microinjection of 2 nmol of SKF-86466, a selective blocker of the α2-adrenoceptors, into the CVLM ( n = 10) decreased MAP, HR, and RSNA (−11.6 ± 2.6 mmHg, −26 ± 7 beats/min, and −15.3 ± 1.7%, respectively, P < 0.01 for each). Artificial cerebrospinal fluid caused neither a cardiovascular effect nor a sympathetic response. Prior injection of SKF-86466 into the ipsilateral CVLM attenuated the effects of clonidine. Bilateral microinjection of muscimol into the RVLM abolished the effects of both clonidine and SKF-86466 injected into the CVLM. The pressor and sympathoexcitatory effects of clonidine injected into the CVLM suggest a neuroinhibitory action of the drug on the CVLM neurons. In addition,the depressor and sympathoinhibitory effects of SKF-86466 injected into the CVLM indicated that activation of α2-adrenoceptors by endogenous ligand inhibits CVLM neurons. The effects of clonidine and the α2-adrenoceptor antagonist in the CVLM require the integrity of the RVLM.


1993 ◽  
Vol 265 (5) ◽  
pp. H1523-H1528 ◽  
Author(s):  
D. G. McCormack ◽  
N. A. Paterson

In pulmonary inflammatory processes such as pneumonia there is diminished hypoxic pulmonary vasoconstriction (HPV). We investigated whether the attenuated HPV in pneumonia is a due to excess nitric oxide (NO) release. Sprague-Dawley rats were anesthetized, and a slurry (0.06 ml) of infected agar beads (containing 6 x 10(5) Pseudomonas aeruginosa organisms) or control (sterile) beads was then injected into a distal bronchus through a tracheotomy. After the establishment of a chronic P. aeruginosa pneumonia (7-10 days later) animals were instrumented for hemodynamic monitoring, and the response to exposure to hypoxic gas (fraction of inspired O2 = 0.08) was recorded before and after the administration of NG-monomethyl-L-arginine (L-NMMA; 50 mg/kg), an inhibitor of NO synthesis. The hypoxic pressor response, as assessed by the absolute increase in pulmonary arterial pressure (PAP) and total pulmonary resistance (TPR), was reduced in infected animals compared with control animals. The change in PAP and TPR was 8.5 +/- 0.7 and 0.053 +/- 0.007, respectively, in control animals compared with 5.9 +/- 0.5 and 0.041 +/- 0.011 in infected animals. After L-NMMA the increase in PAP and TPR during hypoxia was greater in both control and infected animals. However, treatment with L-NMMA did not affect the difference between control and infected animals. We conclude that excess release of NO does not account for the attenuated hypoxic pressor response in pneumonia.


2003 ◽  
Vol 284 (4) ◽  
pp. R916-R927 ◽  
Author(s):  
Zhi-Hua Zhang ◽  
Shun-Guang Wei ◽  
Joseph Francis ◽  
Robert B. Felder

In pathophysiological conditions, increased blood-borne TNF-α induces a broad range of biological effects, including activation of the hypothalamic-pituitary-adrenal axis and sympathetic drive. In urethane-anesthetized adult Sprague-Dawley rats, we examined the mechanisms by which blood-borne TNF-α activates neurons in paraventricular nucleus (PVN) of hypothalamus and rostral ventrolateral medulla (RVLM), two critical brain regions regulating sympathetic drive in normal and pathophysiological conditions. TNF-α (0.5 μg/kg), administered intravenously or into ipsilateral carotid artery (ICA), activated PVN and RLVM neurons and increased sympathetic nerve activity, arterial pressure, and heart rate. Responses to intravenous TNF-α were not affected by vagotomy but were reduced by mid-collicular decerebration. Responses to ICA TNF-α were substantially reduced by injection of the cyclooxygenase inhibitor ketorolac (150 μg) into lateral ventricle. Injection of PGE2 (50 ng) into lateral ventricle or directly into PVN increased PVN or RVLM activity, respectively, and sympathetic drive, with shorter onset latency than blood-borne TNF-α. These findings suggest that blood-borne cytokines stimulate cardiovascular and renal sympathetic responses via a prostaglandin-dependent mechanism operating at the hypothalamic level.


1991 ◽  
Vol 260 (1) ◽  
pp. H218-H224 ◽  
Author(s):  
V. F. Akins ◽  
S. L. Bealer

Brain histamine (HA) was depleted in conscious Sprague-Dawley rats by central administration of alpha-fluoromethyl-histidine (alpha-FMH), an irreversible inhibitor of the HA synthesizing enzyme. Isotonic or hypertonic saline was infused intravenously at 10 microliters.100 g-1.min-1 for 30 min and mean arterial pressure (MAP) and heart rate (HR) were monitored. In addition, plasma vasopressin (AVP) and norepinephrine (NE) were measured pre- and postinfusion. Animals pretreated with alpha-FMH showed a delayed and attenuated pressor response and bradycardia during hypertonic saline (HTS) infusion and a significant reduction in plasma NE levels (-29 +/- 8% below control values). However, plasma concentrations of AVP were similar in both groups. Central pretreatment with the H1-antagonist pyrilamine (PYR) also delayed the onset and significantly attenuated the pressor response to HTS infusion, and caused dose-related decreases in plasma NE concentrations (-34 +/- 8, -47 +/- 5, and -52 +/- 7% after 60, 100, and 600 nmol PYR, respectively). These data indicate a role for central HA in peripheral sympathetic activation but not as a mediator of AVP release to a peripheral hyperosmotic stimulus.


2003 ◽  
Vol 285 (6) ◽  
pp. R1276-R1286 ◽  
Author(s):  
Lin Mei ◽  
Jing Zhang ◽  
Steve Mifflin

Previous studies have demonstrated that microinjection of baclofen, a GABAB receptor agonist, into the nucleus of the solitary tract (NTS) results in an enhanced pressor response in hypertensive (HT) rats compared with normotensive (NT) rats, suggesting a possible alteration in the responses of neurons in this area to activation of GABAB receptors. The following studies were designed to determine whether HT alters the sensitivity of neurons in the NTS to GABA receptor agonists. Sham-operated NT and unilateral nephrectomized, renal-wrap HT Sprague-Dawley rats were anesthetized, and the responses of NTS neurons receiving aortic nerve (AN) afferent inputs to iontophoretic application of GABA, the GABAA receptor agonist muscimol, and the GABAB agonist baclofen were examined. The AN input was classified as monosynaptic (MSN) if the cell responded to each of two stimuli separated by 5 ms with an action potential. If the cell did not respond, the input was considered polysynaptic (PSN). In MSNs, inhibition of AN-evoked discharge by GABA was not altered in 1 wk of HT but was reduced in 4 wk of HT, whereas in PSNs, sensitivity to GABA was reduced at 1 and 4 wk of HT. In HT rats, inhibition of AN-evoked discharge by baclofen was enhanced in MSNs, but not in PSNs, after 1 and 4 wk of HT, whereas inhibition by muscimol was reduced in MSNs and PSNs at 1 and 4 wk of HT. Changes in sensitivity to muscimol and baclofen within MSNs were the same whether the MSN received a slowly or a rapidly conducted AN afferent input. The results demonstrate that early in HT the sensitivity of NTS neurons to inhibitory amino acids is altered and that these changes are maintained for ≥4 wk. The alterations are dependent on the subtype of GABA receptor being activated and whether the neuron receives a mono- or polysynaptic baroreceptor afferent input.


2009 ◽  
Vol 297 (2) ◽  
pp. H859-H865 ◽  
Author(s):  
Wei Zhou ◽  
Aman Mahajan ◽  
John C. Longhurst

The role of nociceptin and its spinal cord neural pathways in electroacupuncture (EA)-related inhibition of visceral excitatory reflexes is not clear. Nociceptin/orphanin FQ (N/OFQ) is an endogenous ligand for a G protein-coupled receptor, called the N/OFQ peptide (NOP) receptor, which has been found to be distributed in the spinal cord. The present study investigated the importance of this system in visceral-cardiovascular reflex modulation during EA. Cardiovascular pressor reflex responses were induced by gastric distension in Sprague-Dawley rats anesthetized by ketamine and xylazine. An intrathecal injection of nociceptin (10 nM) at T1–2 attenuated the pressor responses by 35%, similar to the influence of EA at P 5–6 (42% decrease). An intrathecal injection of the NOP antagonist, [ N-Phe1]nociceptin1-13 NH2, partially reversed the EA response. Pretreatment with the opioid receptor antagonist naloxone did not alter the EA-like inhibitory effect of nociceptin on the pressor reflex, whereas a combination of nociceptin receptor antagonist with naloxone completely abolished the EA response. An intrathecal injection of nociceptin attenuated the pressor responses to the electrical stimulation of the rostral ventrolateral medulla by 46%, suggesting that nociceptin can regulate sympathetic outflow. Furthermore, a bilateral microinjection of NOP antagonist into either the dorsal horn or the intermediolateral column at T1 partially reversed the EA inhibitory effect. These results suggest that nociceptin in the spinal cord mediates part of the EA-related modulation of visceral reflex responses.


2003 ◽  
Vol 90 (2) ◽  
pp. 780-785 ◽  
Author(s):  
Shuang Chen ◽  
Sheng-Xing Ma

The purpose of these studies was to determine the role of gracile nucleus and the effects of l-arginine-derived nitric oxide (NO) synthesis in the nucleus on the cardiovascular responses to electroacupuncture (EA) stimulation of “Zusanli” (ST36). Arterial blood pressure and heart rate were monitored during EA stimulation of ST36 following microinjections of agents into gracile nucleus. EA ST36 produced depressor and bradycardiac responses in anesthetized Sprague-Dawley rats. The cardiovascular responses to EA ST36 were blocked by bilateral microinjection of lidocaine into gracile nucleus. Microinjection of l-arginine into gracile nucleus facilitated the hypotensive and bradycardiac responses to EA ST36. The cardiovascular responses to EA ST36 were attenuated by bilateral microinjection of neuronal NO synthase (nNOS) antisense oligos into gracile nucleus. Microinjection of nNOS sense oligos into gracile nucleus did not alter the cardiovascular response to EA ST36. The results demonstrate that a blockade of neuronal conduction in the gracile nucleus inhibits the cardiovascular responses to EA ST36. The hypotensive and bradycardiac responses to EA ST36 are modified by influences of l-arginine-derived NO synthesis in the gracile nucleus. We conclude that NO plays an important role in mediating the cardiovascular responses to EA ST36 through gracile nucleus.


1988 ◽  
Vol 255 (1) ◽  
pp. G55-G61 ◽  
Author(s):  
J. S. Davison ◽  
G. D. Clarke

Sixty single afferent fibers with endings in the stomach wall were isolated from the cervical vagus of urethan-anesthetized Sprague-Dawley rats. All the fibers, most of which were spontaneously active, increased their discharge after gastric distension or during spontaneous contractions of the stomach. Because of this and the characteristic dynamic and static features of their response to inflation and deflation, they were identified as in-series tension receptors. Certain features of their responses, previously suspected from studies on reflex modulation of vagal efferent fibers or brain stem neurons, were directly confirmed. These included a broad range of mechanical thresholds and spontaneous firing frequencies that were correlated and a sensitivity only to dynamic stretch and active contraction in the highest threshold endings. The tension receptors could also be activated by circulating cholecystokinin, an effect unrelated to changes in intraluminal pressure and hence gastric wall tension, suggesting that there may be humoral modulation of visceral sensory signals that might be relevant to several behavioral situations, such as food intake regulation.


Sign in / Sign up

Export Citation Format

Share Document