Afferent mechanisms underlying stimulation modality-related modulation of acupuncture-related cardiovascular responses

2005 ◽  
Vol 98 (3) ◽  
pp. 872-880 ◽  
Author(s):  
Wei Zhou ◽  
Liang-Wu Fu ◽  
Stephanie C. Tjen-A-Looi ◽  
Peng Li ◽  
John C. Longhurst

Despite the use of acupuncture to treat a number of heart diseases, little is known about the mechanisms that underlie its actions. Therefore, we examined the influence of acupuncture on sympathoexcitatory cardiovascular responses to gastric distension in anesthetized Sprague-Dawley rats. Thirty minutes of low-current, low-frequency, (0.3–0.5 mA, 2 Hz) electroacupuncture (EA), at P 5–6, S 36–37, and H 6–7 overlying the median, deep peroneal, and ulnar nerves significantly decreased reflex pressor responses by 40, 39, and 44%, respectively. In contrast, sham acupuncture involving needle insertion without stimulation at P 5–6 or 30 min of EA at LI 6–7 acupoints overlying the superficial radial nerve did not attenuate the reflex. Similarly, EA at P 5–6 using 40- or 100-Hz stimulation frequencies did not inhibit the reflex. Compared with EA at P 5–6, EA at two sets of acupoints, including P 5–6 and S 36–37, did not lead to larger inhibition of the reflex. Two minutes of manual acupuncture (MA; 2 Hz) at P 5–6 every 10 min for 30 min inhibited the reflex cardiovascular pressor response by 33%, a value not significantly different from 2-Hz EA at P 5–6. Single-unit afferent activity was not different between electrical stimulation (ES) and manual stimulation. However, 2-Hz ES activated more somatic afferents than 10- or 20-Hz ES. These data suggest that, although the location of acupoint stimulation and the frequency of stimulation determine the extent of influence of EA, there is little difference between low-frequency EA and MA at P 5–6. Furthermore, simultaneous stimulation using two acupoints that independently exert strong effects did not lead to an additive or a facilitative interaction. The similarity of the responses to EA and MA and the lack of cardiovascular response to high-frequency EA appear to be largely a function of somatic afferent responses.

2002 ◽  
Vol 283 (6) ◽  
pp. R1335-R1345 ◽  
Author(s):  
Peng Li ◽  
Kasra Rowshan ◽  
Melissa Crisostomo ◽  
Stephanie C. Tjen-A-Looi ◽  
John C. Longhurst

The effect of electroacupuncture (EA) on the reflex cardiovascular response induced by mechanical distension of the stomach was studied in ventilated male Sprague-Dawley rats anesthetized by ketamine and α-chloralose. Repeated balloon inflation of the stomach to produce 20 mmHg tension on the gastric wall induced a consistent rise in mean arterial pressure, while heart rate (372 ± 22 beats/min) was unchanged. This response was reversed by transection of the splanchnic nerves. Bilateral application of EA (1–2 mA, 2 Hz) at Neiguan-Jianshi acupoints (pericardial meridian, Pe 5–6) over the median nerve for 30 min significantly decreased the pressor response from 33 ± 6 to 18 ± 4 mmHg ( n = 7, P < 0.05). This effect began after 10 min of EA and continued for 40 min after termination of EA. EA at Zusanli-Shangquxu acupoints (stomach meridian, St 36–37) over the deep peroneal nerve similarly inhibited the pressor response. The effect lasted for 10 min after EA was stopped ( n = 6, P < 0.05), while EA at Guangming-Xuanzhong acupoints (gallbladder meridian, GB 37–39) over the superficial peroneal nerve did not inhibit the pressor response. Naloxone injected intravenously ( n = 6) immediately after termination of EA or administered by microinjection into the rostral ventrolateral medulla (rVLM) 25 min after initiation of EA ( n = 6) reversed the inhibition by EA, suggesting an opiate mechanism, including the rVLM, was involved.


2003 ◽  
Vol 90 (2) ◽  
pp. 780-785 ◽  
Author(s):  
Shuang Chen ◽  
Sheng-Xing Ma

The purpose of these studies was to determine the role of gracile nucleus and the effects of l-arginine-derived nitric oxide (NO) synthesis in the nucleus on the cardiovascular responses to electroacupuncture (EA) stimulation of “Zusanli” (ST36). Arterial blood pressure and heart rate were monitored during EA stimulation of ST36 following microinjections of agents into gracile nucleus. EA ST36 produced depressor and bradycardiac responses in anesthetized Sprague-Dawley rats. The cardiovascular responses to EA ST36 were blocked by bilateral microinjection of lidocaine into gracile nucleus. Microinjection of l-arginine into gracile nucleus facilitated the hypotensive and bradycardiac responses to EA ST36. The cardiovascular responses to EA ST36 were attenuated by bilateral microinjection of neuronal NO synthase (nNOS) antisense oligos into gracile nucleus. Microinjection of nNOS sense oligos into gracile nucleus did not alter the cardiovascular response to EA ST36. The results demonstrate that a blockade of neuronal conduction in the gracile nucleus inhibits the cardiovascular responses to EA ST36. The hypotensive and bradycardiac responses to EA ST36 are modified by influences of l-arginine-derived NO synthesis in the gracile nucleus. We conclude that NO plays an important role in mediating the cardiovascular responses to EA ST36 through gracile nucleus.


2017 ◽  
pp. 449-457 ◽  
Author(s):  
Y.-H. LIN ◽  
Y.-P. LIU ◽  
Y.-C. LIN ◽  
P.-L. LEE ◽  
C.-S. TUNG

This study extends our previous work by examining the effects of alpha2-adrenoceptors under cold stimulation involving the increase of myogenic vascular oscillations as increases of very-low-frequency and low-frequency of the blood pressure variability. Forty-eight adult male Sprague-Dawley rats were randomly divided into four groups: vehicle; yohimbine; hexamethonium+yohimbine; guanethidine+yohimbine. Systolic blood pressure, heart rate, power spectral analysis of spontaneous blood pressure and heart rate variability and spectral coherence at very-low-frequency (0.02 to 0.2 Hz), low-frequency (0.2 to 0.6 Hz), and high-frequency (0.6 to 3.0 Hz) regions were monitored using telemetry. Key findings are as follows: 1) Cooling-induced pressor response was attenuated by yohimbine and further attenuated by hexamethonium+yohimbine and guanethidine+yohimbine, 2) Cooling-induced tachycardia response of yohimbine was attenuated by hexame-thonium+yohimbine and guanethidine+yohimbine, 3) Different patterns of power spectrum reaction and coherence value compared hexamethonium+yohimbine and guanethi-dine+yohimbine to yohimbine alone under cold stimulation. The results suggest that sympathetic activation of the postsynaptic alpha2-adrenoceptors causes vasoconstriction and heightening myogenic vascular oscillations, in turn, may increase blood flow to prevent tissue damage under stressful cooling challenge.


2005 ◽  
Vol 288 (6) ◽  
pp. R1783-R1790 ◽  
Author(s):  
Douglas G. Whyte ◽  
Alan Kim Johnson

Blood flow is redistributed from the viscera to the periphery during periods of heat stress to maximize heat loss. The heat-induced redistribution of blood flow is strongly influenced by nonthermal inputs such as hydration status. At present, little is known about where thermal and nonthermal information is integrated to generate an appropriate effector response. Recently, the periventricular tissue that surrounds the anteroventral third ventricle (AV3V) has been implicated in the integration of thermal and osmotic information. The purpose of the present study was to determine the effects of electrolytic lesions of the AV3V on the cardiovascular response to a passive heat stress in unanesthetized, free-moving male Sprague-Dawley rats. Core temperature was elevated at a constant rate of ∼0.03°C/min in sham- and AV3V-lesion rats using an infrared heat lamp. Changes in mesenteric and hindquarter vascular resistance were determined using Doppler flow probes, and heat-induced salivation was estimated using the spit-print technique. The rise in mean arterial pressure (MAP), heart rate (HR), and mesenteric resistance in response to elevations in core temperature were all attenuated in AV3V-lesion rats; however, hindquarter resistance was unaffected. Heat-induced salivation was also diminished. In addition, AV3V-lesion rats were more affected by the novelty of the experimental environment, resulting in a higher basal core temperature, HR, and MAP. These results indicate that AV3V lesions disrupt the cardiovascular and salivatory response to a passive heat stress in rats and produce an exaggerated stress-induced fever triggered by a novel environment.


1987 ◽  
Vol 252 (1) ◽  
pp. H156-H162 ◽  
Author(s):  
A. H. Hassen ◽  
G. Feuerstein

We have evaluated the relative contributions of the sympathetic and parasympathetic nervous systems to the increased mean arterial pressure (MAP) and heart rate (HR) elicited by the selective mu-agonist D-Ala2, MePhe4, Gly-ol5 enkephalin (DAGO) following microinjection (100 nl) into the nucleus of tractus solitarius (NTS) of anesthetized, artificially ventilated Sprague-Dawley rats. The effects of anesthesia and central opioid-receptor activation on baroreflex function were also examined. All cardiovascular responses elicited by DAGO were eliminated by complete C1 spinal transection. Pretreatment with the alpha-adrenergic antagonist phentolamine attenuated the increase in MAP, but not the tachycardia; the beta-blocker propranolol abolished the tachycardia but not the pressor response to DAGO. Adrenalectomy, vagotomy, or pretreatment with atropine methyl nitrate were all without effect. Baroreflexes were attenuated in animals anesthetized with pentobarbital sodium, but were present in urethan-anesthetized rats. DAGO attenuated the increases in MAP and HR elicited following carotid occlusion, but not the bradycardia elicited by a phenylephrine-induced pressor response. These data indicate that mu-receptors in the NTS elicit cardiovascular responses that are mediated by increased sympathetic nerve activity, and accompanied by selective attenuation of baroreflex function.


Author(s):  
Min Hu ◽  
Fan Du ◽  
Shi Liu

The purpose of this study was to investigate the effects of electroacupuncture at Zusanli acupoint on the enteric neuropathy in diabetic rats. Sprague–Dawley rats were divided into different groups depending on the total electroacupuncture span and frequency. The expression of nitric oxide synthase (nNOS), choline acetyltransferase (CHAT), protein gene product 9.5 (PGP9.5), and doublecortin was significantly decreased in the diabetic group compared with the control group. Long-term electroacupuncture at Zusanli with either high frequency or low frequency could increase the expression levels of nNOS, CHAT, PGP9.5, and doublecortin, and the increase was greater in the high-frequency group. But no obvious changes were seen in the short-term electroacupuncture groups. These results suggest that electroacupuncture at Zusanli can restore the deficiency of enteric neurons in diabetes partly but a comparative long duration of stimuli (6 weeks) is required. The increase of doublecortin may be involved in this positive process.


1993 ◽  
Vol 265 (5) ◽  
pp. H1523-H1528 ◽  
Author(s):  
D. G. McCormack ◽  
N. A. Paterson

In pulmonary inflammatory processes such as pneumonia there is diminished hypoxic pulmonary vasoconstriction (HPV). We investigated whether the attenuated HPV in pneumonia is a due to excess nitric oxide (NO) release. Sprague-Dawley rats were anesthetized, and a slurry (0.06 ml) of infected agar beads (containing 6 x 10(5) Pseudomonas aeruginosa organisms) or control (sterile) beads was then injected into a distal bronchus through a tracheotomy. After the establishment of a chronic P. aeruginosa pneumonia (7-10 days later) animals were instrumented for hemodynamic monitoring, and the response to exposure to hypoxic gas (fraction of inspired O2 = 0.08) was recorded before and after the administration of NG-monomethyl-L-arginine (L-NMMA; 50 mg/kg), an inhibitor of NO synthesis. The hypoxic pressor response, as assessed by the absolute increase in pulmonary arterial pressure (PAP) and total pulmonary resistance (TPR), was reduced in infected animals compared with control animals. The change in PAP and TPR was 8.5 +/- 0.7 and 0.053 +/- 0.007, respectively, in control animals compared with 5.9 +/- 0.5 and 0.041 +/- 0.011 in infected animals. After L-NMMA the increase in PAP and TPR during hypoxia was greater in both control and infected animals. However, treatment with L-NMMA did not affect the difference between control and infected animals. We conclude that excess release of NO does not account for the attenuated hypoxic pressor response in pneumonia.


2005 ◽  
Vol 98 (6) ◽  
pp. 2056-2063 ◽  
Author(s):  
Melissa M. Crisostomo ◽  
Peng Li ◽  
Stephanie C. Tjen-A-Looi ◽  
John C. Longhurst

Electroacupuncture (EA) at Neiguan-Jianshi acupoints through an opioid mechanism inhibits the cardiovascular pressor response induced by mechanical stimulation of the stomach. Because nociceptin also may regulate cardiovascular activity through its action in the brain stem, we hypothesized that this neuromodulator serves a role in the EA-related inhibitory effect. Blood pressure in ventilated male Sprague-Dawley rats (400–600 g) anesthetized by ketamine and α-chloralose was measured during balloon inflation of the stomach. Gastric distension with 6–8 ml of air induced consistent pressor reflexes of 26 ± 1 mmHg that could be repeated every 10 min for 100 min. When nociceptin (10 nM) was microinjected into the rostral ventrolateral medulla (rVLM), the pressor response induced by gastric distension was inhibited by 68 ± 6%. Thirty minutes of EA also decreased the reflex response by 75 ± 11%; microinjection of saline into the rVLM did not alter the inhibitory effect of EA. In contrast, microinjection of a nociceptin receptor antagonist into the rVLM promptly reversed the EA response. Pretreatment with the opioid receptor antagonist naloxone did not influence the EA-like inhibitory effect of nociceptin on the distension-induced pressor reflex (22 ± 1 to 8 ± 2 mmHg). Furthermore, a μ-opioid receptor agonist microinjected into the rVLM after microinjection of a nociceptin receptor antagonist during EA promptly reversed the nociceptin receptor antagonist-related inhibition of the EA effect. Thus, in addition to the classical opioid system, nociceptin, through opioid receptor-like-1 receptor stimulation in the rVLM, participates in the modulatory influence of EA on reflex-induced increases in blood pressure.


1978 ◽  
Vol 235 (2) ◽  
pp. H242-H246 ◽  
Author(s):  
P. J. Baker ◽  
E. R. Ramey ◽  
P. W. Ramwell

Sex differences in the systemic depressor response to arachidonic acid (50 or 150 microgram/kg iv) were observed in intact and castrated anesthetized Sprague-Dawley rats. The rank order of responsiveness was: castrate males, castrate females, females, males; all four groups were significantly different (P less than 0.05) at the higher dose. Castrated males pretreated with testosterone (1 mg/kg sc) 5 or 7 days previously gave a response at the higher arachidonate dose levels that was of the same order as that obtained with intact males. Similar treatment of castrate males with androgen potentiated (P less than 0.05) the vasopressor action of norepinephrine (0.25 microgram/kg) on day 7 after the testosterone pretreatment. In contrast, treatment with depot estradiol (100 microgram/kg sc) in castrate males produced no significant change in the response to either of the vasoactive compounds on both days 5 and 7 after pretreatment. These data suggest that testosterone may be a significant factor in the development of sex differences in the cardiovascular systems of rats.


Sign in / Sign up

Export Citation Format

Share Document