Sympathetic but not sensory denervation stimulates white adipocyte proliferation

2006 ◽  
Vol 291 (6) ◽  
pp. R1630-R1637 ◽  
Author(s):  
Michelle T. Foster ◽  
Timothy J. Bartness

White adipocyte proliferation is a hallmark of obesity, but it largely remains a mechanistic mystery. We and others previously demonstrated that surgical denervation of white adipose tissue (WAT) triggers increases in fat cell number, but it is unknown whether this was due to preadipocyte proliferation or maturation of existing preadipocytes that allowed them to be counted. In addition, surgical denervation severs not only sympathetic but also sensory innervation of WAT. Therefore, we tested whether sympathetic WAT denervation triggers adipocyte proliferation using 5-bromo-2′-deoxyuridine (BrdU) as a marker of proliferation and quantified BrdU-immunoreactive (ir) cells that were colabeled with AD-3-ir, an adipocyte-specific membrane protein marker. The unilateral denervation model was used for all experiments where Siberian hamster inguinal WAT (IWAT) was unilaterally denervated, the contralateral pad was sham denervated serving as a within-animal control, and then BrdU was injected systemically for 6 days. When IWAT was surgically denervated, severing both sympathetic and sensory nerves, tyrosine hydroxylase (TH)-ir, a sympathetic nerve marker, and calcitonin gene-related peptide (CGRP)-ir, a sensory nerve marker, were significantly decreased, and BrdU+AD-3-ir adipocytes were increased ∼300%. When IWAT was selectively sensory denervated via local microinjections of capsaicin, a sensory nerve-specific toxin, CGRP-ir, but not TH-ir, was decreased, and BrdU+AD-3-ir adipocytes were unchanged. When IWAT was selectively sympathetically denervated via local microinjections of 6-hydroxy-dopamine, a catecholaminergic-specific toxin, TH-ir, but not CGRP-ir, was significantly decreased, and BrdU+AD-3-ir adipocytes were increased ∼400%. Collectively, these data provide the first direct evidence that sympathetic nerves inhibit white adipocyte proliferation in vivo.

2013 ◽  
Vol 304 (8) ◽  
pp. R675-R682 ◽  
Author(s):  
Jan Mulder ◽  
Tomas Hökfelt ◽  
Mark M. Knuepfer ◽  
Ulla C. Kopp

Efferent renal sympathetic nerves reinnervate the kidney after renal denervation in animals and humans. Therefore, the long-term reduction in arterial pressure following renal denervation in drug-resistant hypertensive patients has been attributed to lack of afferent renal sensory reinnervation. However, afferent sensory reinnervation of any organ, including the kidney, is an understudied question. Therefore, we analyzed the time course of sympathetic and sensory reinnervation at multiple time points (1, 4, and 5 days and 1, 2, 3, 4, 6, 9, and 12 wk) after renal denervation in normal Sprague-Dawley rats. Sympathetic and sensory innervation in the innervated and contralateral denervated kidney was determined as optical density (ImageJ) of the sympathetic and sensory nerves identified by immunohistochemistry using antibodies against markers for sympathetic nerves [neuropeptide Y (NPY) and tyrosine hydroxylase (TH)] and sensory nerves [substance P and calcitonin gene-related peptide (CGRP)]. In denervated kidneys, the optical density of NPY-immunoreactive (ir) fibers in the renal cortex and substance P-ir fibers in the pelvic wall was 6, 39, and 100% and 8, 47, and 100%, respectively, of that in the contralateral innervated kidney at 4 days, 4 wk, and 12 wk after denervation. Linear regression analysis of the optical density of the ratio of the denervated/innervated kidney versus time yielded similar intercept and slope values for NPY-ir, TH-ir, substance P-ir, and CGRP-ir fibers (all R2 > 0.76). In conclusion, in normotensive rats, reinnervation of the renal sensory nerves occurs over the same time course as reinnervation of the renal sympathetic nerves, both being complete at 9 to 12 wk following renal denervation.


1991 ◽  
Vol 261 (4) ◽  
pp. L223-L235 ◽  
Author(s):  
J. N. Baraniuk ◽  
M. Kaliner

The nasal mucosa is innervated by the sensory, parasympathetic, and sympathetic nervous systems. Nociceptive sensory nerves are stimulated by mucosal injury, inhalation of irritants, or mast cell degranulation and release of the calcitonin gene-related peptide, the tachykinins substance P and neurokinin A, and other peptides by the axon response mechanism. Sensory nerve stimulation initiates systemic reflexes, such as the sneeze, and central parasympathetic reflexes which release acetylcholine, vasoactive intestinal peptide, and other peptides and lead to glandular secretion. In concert, these proinflammatory neural responses lead to vasodilation, vascular permeability, and glandular secretion. Sympathetic nerves release neuropeptide Y and norepinephrine, potent vasoconstrictors which act to decompress the nasal mucosa and produce nasal patency. The balance between the effects of parasympathetic and sympathetic neurotransmitters may regulate nasal homeostasis, whereas the nociceptive sensory system may be held in reserve as a defense mechanism. Dysfunction of these systems may lead to pathological nasal syndromes. In the future, specific neuropeptide agonists and antagonists may be useful for the treatment of human rhinitic diseases.


Pain Medicine ◽  
2019 ◽  
Vol 20 (11) ◽  
pp. 2208-2212 ◽  
Author(s):  
Aaron Conger ◽  
Daniel M Cushman ◽  
Kortnie Walker ◽  
Russell Petersen ◽  
David R Walega ◽  
...  

Abstract Background Fluoroscopically guided cooled genicular nerve radiofrequency ablation (RFA) is an increasingly performed procedure for chronic, refractory knee pain due to osteoarthritis. Traditionally, partial sensory denervation has been accomplished through ablation of the superomedial, superolateral, and inferomedial genicular nerves. However, recent cadaveric studies have demonstrated additional sensory nerves and significant anatomic variation that impact current protocols. Objective We describe an updated cooled genicular nerve radiofrequency ablation protocol that accounts for varied nerve location of the superomedial, superolateral, and inferomedial genicular nerves, as well as capture of the terminal articular branches of the nerves to the vastus intermedius, vastus lateralis, and vastus medialis. Furthermore, we describe an adjusted technique for inferomedial genicular nerve capture that mitigates the risk of pes anserine tendon injury. Design Technical report and brief literature review. Methods Cadaveric studies relating to the sensory innervation of the anterior knee joint were reviewed, and a more accurate and comprehensive cooled genicular nerve radiofrequency ablation (CRFA) protocol is proposed. Conclusions Based on recent, rigorous anatomic dissections of the knee, the proposed genicular nerve CRFA protocol will provide more complete sensory denervation and potentially improve clinical outcomes. Prospective studies will be needed to confirm the hypothesis that this protocol will result in improved effectiveness and safety of genicular nerve RFA.


2017 ◽  
Vol 114 (20) ◽  
pp. 5265-5270 ◽  
Author(s):  
Delphine Duteil ◽  
Milica Tosic ◽  
Dominica Willmann ◽  
Anastasia Georgiadi ◽  
Toufike Kanouni ◽  
...  

Aging is accompanied by major changes in adipose tissue distribution and function. In particular, with time, thermogenic-competent beige adipocytes progressively gain a white adipocyte morphology. However, the mechanisms controlling the age-related transition of beige adipocytes to white adipocytes remain unclear. Lysine-specific demethylase 1 (Lsd1) is an epigenetic eraser enzyme positively regulating differentiation and function of adipocytes. Here we show that Lsd1 levels decrease in aging inguinal white adipose tissue concomitantly with beige fat cell decline. Accordingly, adipocyte-specific increase of Lsd1 expression is sufficient to rescue the age-related transition of beige adipocytes to white adipocytes in vivo, whereas loss of Lsd1 precipitates it. Lsd1 maintains beige adipocytes by controlling the expression of peroxisome proliferator-activated receptor α (Ppara), and treatment with a Ppara agonist is sufficient to rescue the loss of beige adipocytes caused by Lsd1 ablation. In summary, our data provide insights into the mechanism controlling the age-related beige-to-white adipocyte transition and identify Lsd1 as a regulator of beige fat cell maintenance.


2000 ◽  
Vol 349 (2) ◽  
pp. 463-471 ◽  
Author(s):  
Wen GUO ◽  
Ji-Kyung CHOI ◽  
James L. KIRKLAND ◽  
Barbara E. CORKEY ◽  
James A. HAMILTON

Medium-chain triacylglycerols (MCT) are present in milk, coconut oil and other foods, and are used therapeutically in special diets for certain disorders of lipid and glucose utilization. Recently, it has become apparent that MCT are not only oxidized in the liver, but are also present in lymph and fat tissue, particularly after chronic treatment. To evaluate the influence of MCT on metabolism in fat cells, we compared incorporation of octanoate and oleate into cellular triacylglycerols of 3T3-L1 adipocytes as well as their effects on preadipocyte differentiation. We found that less octanoate than oleate was stored and that more octanoate than oleate was oxidized. Octanoate was esterified to a greater extent at the sn-1,3 position of glyceryl carbons than at the sn-2 position, whereas the opposite was true for oleate. Glycerol release from fat cells pre-treated with octanoate was also greater than from cells pre-treated with oleate, presumably related to the preferential release of octanoate from the sn-1,3 position. Octanoate was not incorporated into lipids in undifferentiated cells and did not induce differentiation in these cells, whereas oleate was readily stored and actually induced differentiation. Incorporation of octanoate into lipids increased as cells differentiated, but reached a maximum of about 10% of the total stored fatty acids. If these effects in vitro also occur in vivo, substitution of octanoate for oleate or other long-chain fatty acids could have the beneficial effect of diminishing fat-cell number and lipid content.


PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e48767 ◽  
Author(s):  
Maria Jimenez-Preitner ◽  
Xavier Berney ◽  
Bernard Thorens

2005 ◽  
Vol 288 (4) ◽  
pp. R1028-R1037 ◽  
Author(s):  
Haifei Shi ◽  
C. Kay Song ◽  
Antonio Giordano ◽  
Saverio Cinti ◽  
Timothy J. Bartness

Functional and histological evidence for the sympathetic nervous system (SNS) innervation of white adipose tissue (WAT) exists for several species; however, its sensory innervation has only been shown in laboratory rats, and its function is unclear. We tested the effects of sensory and SNS innervation of Siberian hamster epididymal and inguinal WAT (EWAT and IWAT) by assessing calcitonin gene-related peptide (CGRP)- and tyrosine hydroxylase-immunoreactivity (ir), respectively. Next, we tested the role of the sensory innervation of WAT on growth and cellularity because WAT surgical denervation increases pad mass via selective increases in fat cell number, an effect ascribed to SNS denervation but that could be due to the accompanying surgical disruption of WAT sensory innervation. Sensory denervation was accomplished via multiple local microinjections of capsaicin into WAT, and its effects were compared with those of surgical denervation. Surgically denervated IWAT and EWAT showed significantly decreased tyrosine hydroxylase-ir and CGRP-ir, whereas capsaicin-treated WAT had only significantly decreased CGRP-ir. Surgically denervated pad masses were significantly increased; this was accompanied by increased total fat cell number in IWAT, with no change in fat cell size. EWAT only showed a significant increase in the number of small- to medium-sized adipocytes (75–125 μm diameter). By contrast, sensory-denervated pad masses were unchanged, but IWAT showed significantly increased average fat cell size. Collectively, these data provide immunohistochemical evidence for sensory and SNS innervation of WAT in Siberian hamsters and differential control of WAT cellularity by these innervations, as well as the ability of locally applied capsaicin to selectively reduce WAT sensory innervation.


2004 ◽  
Vol 286 (6) ◽  
pp. R1167-R1175 ◽  
Author(s):  
Robert R. Bowers ◽  
William T. L. Festuccia ◽  
C. Kay Song ◽  
Haifei Shi ◽  
Renato H. Migliorini ◽  
...  

White adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS), and the central origins of this innervation have been demonstrated for inguinal and epididymal WAT (iWAT and eWAT, respectively) using a viral transneuronal tract tracer, the pseudorabies virus (PRV). Although the more established role of this sympathetic innervation of WAT is as a major stimulator of lipid mobilization, this innervation also inhibits WAT fat cell number (FCN); thus, local denervation of WAT leads to marked increases in WAT mass and FCN. The purpose of this study was to extend our understanding of the SNS regulation of FCN using neuroanatomical and functional analyses. Therefore, we injected PRV into retroperitoneal WAT (rWAT) to compare the SNS outflow to this pad from what already is known for iWAT and eWAT. In addition, we tested the ability of local unilateral denervation of rWAT or iWAT to promote increases in WAT mass and FCN vs. their contralateral neurally intact counterparts. Although the overall pattern of innervation was more similar than different for rWAT vs. iWAT or eWAT, its SNS outflow appeared to involve more neurons in the suprachiasmatic and solitary tract nuclei. Denervation produced significant increases in WAT mass and FCN for both iWAT and rWAT, but FCN was increased significantly more in iWAT than in rWAT. These data suggest differences in origins of the sympathetic outflow to WAT and functional differences in the WAT SNS innervation that could contribute to the differential propensity for fat cell proliferation across WAT depots in vivo.


2021 ◽  
Vol 118 (42) ◽  
pp. e2103087118
Author(s):  
Robert J. Tower ◽  
Zhu Li ◽  
Yu-Hao Cheng ◽  
Xue-Wei Wang ◽  
Labchan Rajbhandari ◽  
...  

The patterning and ossification of the mammalian skeleton requires the coordinated actions of both intrinsic bone morphogens and extrinsic neurovascular signals, which function in a temporal and spatial fashion to control mesenchymal progenitor cell (MPC) fate. Here, we show the genetic inhibition of tropomyosin receptor kinase A (TrkA) sensory nerve innervation of the developing cranium results in premature calvarial suture closure, associated with a decrease in suture MPC proliferation and increased mineralization. In vitro, axons from peripheral afferent neurons derived from dorsal root ganglions (DRGs) of wild-type mice induce MPC proliferation in a spatially restricted manner via a soluble factor when cocultured in microfluidic chambers. Comparative spatial transcriptomic analysis of the cranial sutures in vivo confirmed a positive association between sensory axons and proliferative MPCs. SpatialTime analysis across the developing suture revealed regional-specific alterations in bone morphogenetic protein (BMP) and TGF-β signaling pathway transcripts in response to TrkA inhibition. RNA sequencing of DRG cell bodies, following direct, axonal coculture with MPCs, confirmed the alterations in BMP/TGF-β signaling pathway transcripts. Among these, the BMP inhibitor follistatin-like 1 (FSTL1) replicated key features of the neural-to-bone influence, including mitogenic and anti-osteogenic effects via the inhibition of BMP/TGF-β signaling. Taken together, our results demonstrate that sensory nerve-derived signals, including FSTL1, function to coordinate cranial bone patterning by regulating MPC proliferation and differentiation in the suture mesenchyme.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 681-681
Author(s):  
Donna H Wang ◽  
Wei Wu

18 Neonatal degeneration of capsaicin-sensitive sensory nerves renders a rat responsive to a salt load with an increase in blood pressure and a decrease in natriuretic response (Wang, et al, Hypertension 1998;32:649-653). To test the hypothesis that the sympathetic nervous system contributes to the development of salt sensitive hypertension induced by sensory denervation, newborn Wistar rats were given 50mg/kg capsaicin and/or 80mg/kg guanethidine s.c.. Control rats were treated with vehicle. After the weaning period, male rats were grouped as the following and given high sodium diet (4%) for 2 weeks: capsaicin and guanethidine co-administration (CAP-GUA), capsaicin only (CAP), guanethidine only (GUA), and vehicle control (CON). Norepinephrine concentrations in the atrium were significantly lower in CAP-GUA and GUA than in CON rats (p<0.05). Twenty-four hour urine and sodium excretion was significantly lower in CAP than in CAP-GUA, GUA and CON rats (p<0.05). Mean arterial pressure (mmHg) was significantly higher in CAP (180±10) than in CAP-GUA (106±1), GUA (133±5), and CON (122±3) rats (p<0.05). Thus, sympathectomy restores the natriuretic response to a high salt intake and prevents the development of salt sensitive hypertension induced by sensory denervation. These data indicate that sensory nerves counterbalances the pro-hypertensive effect of the sympathetic nerves to maintain blood pressure within normal range during salt loading.


Sign in / Sign up

Export Citation Format

Share Document