Low-frequency electroacupuncture and physical exercise decrease high muscle sympathetic nerve activity in polycystic ovary syndrome

2009 ◽  
Vol 297 (2) ◽  
pp. R387-R395 ◽  
Author(s):  
Elisabet Stener-Victorin ◽  
Elizabeth Jedel ◽  
Per Olof Janson ◽  
Yrsa Bergmann Sverrisdottir

We have recently shown that polycystic ovary syndrome (PCOS) is associated with high muscle sympathetic nerve activity (MSNA). Animal studies support the concept that low-frequency electroacupuncture (EA) and physical exercise, via stimulation of ergoreceptors and somatic afferents in the muscles, may modulate the activity of the sympathetic nervous system. The aim of the present study was to investigate the effect of these interventions on sympathetic nerve activity in women with PCOS. In a randomized controlled trial, 20 women with PCOS were randomly allocated to one of three groups: low-frequency EA ( n = 9), physical exercise ( n = 5), or untreated control ( n = 6) during 16 wk. Direct recordings of multiunit efferent postganglionic MSNA in a muscle fascicle of the peroneal nerve before and following 16 wk of treatment. Biometric, hemodynamic, endocrine, and metabolic parameters were measured. Low-frequency EA ( P = 0.036) and physical exercise ( P = 0.030) decreased MSNA burst frequency compared with the untreated control group. The low-frequency EA group reduced sagittal diameter ( P = 0.001), while the physical exercise group reduced body weight ( P = 0.004) and body mass index ( P = 0.004) compared with the untreated control group. Sagittal diameter was related to MSNA burst frequency ( Rs = 0.58, P < 0.005) in the EA group. No correlation was found for body mass index and MSNA in the exercise group. There were no differences between the groups in hemodynamic, endocrine, and metabolic variables. For the first time we demonstrate that low-frequency EA and physical exercise lowers high sympathetic nerve activity in women with PCOS. Thus, treatment with low-frequency EA or physical exercise with the aim to reduce MSNA may be of importance for women with PCOS.

2015 ◽  
Vol 309 (7) ◽  
pp. H1218-H1224 ◽  
Author(s):  
Fatima El-Hamad ◽  
Elisabeth Lambert ◽  
Derek Abbott ◽  
Mathias Baumert

Beat-to-beat variability of the QT interval (QTV) is sought to provide an indirect noninvasive measure of sympathetic nerve activity, but a formal quantification of this relationship has not been provided. In this study we used power contribution analysis to study the relationship between QTV and muscle sympathetic nerve activity (MSNA). ECG and MSNA were recorded in 10 healthy subjects in the supine position and after 40° head-up tilt. Power spectrum analysis was performed using a linear autoregressive model with two external inputs: heart period (RR interval) variability (RRV) and MSNA. Total and low-frequency power of QTV was decomposed into contributions by RRV, MSNA, and sources independent of RRV and MSNA. Results show that the percentage of MSNA power contribution to QT is very small and does not change with tilt. RRV power contribution to QT power is notable and decreases with tilt, while the greatest percentage of QTV is independent of RRV and MSNA in the supine position and after 40° head-up tilt. In conclusion, beat-to-beat QTV in normal subjects does not appear to be significantly affected by the rhythmic modulations in MSNA following low to moderate orthostatic stimulation. Therefore, MSNA oscillations may not represent a useful surrogate for cardiac sympathetic nerve activity at moderate levels of activation, or, alternatively, sympathetic influences on QTV are complex and not quantifiable with linear shift-invariant autoregressive models.


2001 ◽  
Vol 280 (2) ◽  
pp. H722-H729 ◽  
Author(s):  
Philippe Van De Borne ◽  
Nicola Montano ◽  
Krzysztof Narkiewicz ◽  
Jean P. Degaute ◽  
Alberto Malliani ◽  
...  

Chemoreflex stimulation elicits both hyperventilation and sympathetic activation, each of which may have different influences on oscillatory characteristics of cardiovascular variability. We examined the influence of hyperventilation on the interactions between changes in R-R interval (RR) and muscle sympathetic nerve activity (MSNA) and changes in neurocirculatory variability, in 14 healthy subjects. We performed spectral analysis of RR and MSNA variability during each of the following interventions: 1) controlled breathing, 2) maximal end-expiratory apnea, 3) isocapnic voluntary hyperventilation, and 4) hypercapnia-induced hyperventilation. MSNA increased from 100% during controlled breathing to 170 ± 25% during apnea ( P = 0.02). RR was unchanged, but normalized low-frequency (LF) variability of both RR and MSNA increased markedly ( P < 0.001). During isocapnic hyperventilation, minute ventilation increased to 20.2 ± 1.4 l/min ( P < 0.0001). During hypercapnic hyperventilation, minute ventilation also increased (to 19.7 ± 1.7 l/min) as did end-tidal CO2 (both P < 0.0001). MSNA remained unchanged during isocapnic hyperventilation (104 ± 7%) but increased to 241 ± 49% during hypercapnic hyperventilation ( P < 0.01). RR decreased during both isocapnic and hypercapnic hyperventilation ( P < 0.05). However, normalized LF variability of RR and of MSNA decreased ( P < 0.05) during both isocapnic and hypercapnic hyperventilation, despite the tachycardia and heightened sympathetic nerve traffic. In conclusion, marked respiratory oscillations in autonomic drive induced by hyperventilation may induce dissociation between RR, MSNA, and neurocirculatory variability, perhaps by suppressing central genesis and/or inhibiting transmission of LF cardiovascular rhythms.


Hypertension ◽  
2020 ◽  
Vol 76 (3) ◽  
pp. 997-1005 ◽  
Author(s):  
Daniel A. Keir ◽  
Mark B. Badrov ◽  
George Tomlinson ◽  
Catherine F. Notarius ◽  
Derek S. Kimmerly ◽  
...  

As with blood pressure, age-related changes in muscle sympathetic nerve activity (MSNA) may differ nonlinearly between sexes. Data acquired from 398 male (age: 39±17; range: 18–78 years [mean±SD]) and 260 female (age: 37±18; range: 18–81 years) normotensive healthy nonmedicated volunteers were analyzed using linear regression models with resting MSNA burst frequency as the outcome and the predictors sex, age, MSNA, blood pressure, and body mass index modelled with natural cubic splines. Age and body mass index contributed 41% and 11%, respectively, of MSNA variance in females and 23% and 1% in males. Overall, changes in MSNA with age were sigmoidal. At age 20, mean MSNA of males and females were similar, then diverged significantly, reaching in women a nadir at age 30. After 30, MSNA increased nonlinearly in both sexes. Both MSNA discharge and blood pressure were lower in females until age 50 (17±9 versus 25±10 bursts·min −1 ; P <1×10 −19 ; 106±11/66±8 versus 116±7/68±9 mm Hg; P <0.01) but converged thereafter (38±11 versus 35±12 bursts·min −1 ; P =0.17; 119±15/71±13 versus 120±13/72±9 mm Hg; P >0.56). Compared with age 30, MSNA burst frequency at age 70 was 57% higher in males but 3-fold greater in females; corresponding increases in systolic blood pressure were 1 (95% CI, −4 to 5) and 12 (95% CI, 6–16) mm Hg. Except for concordance in females beyond age 40, there was no systematic change with age in any resting MSNA-blood pressure relationship. In normotensive adults, MSNA increases after age 30, with ascendance steeper in women.


2001 ◽  
Vol 280 (3) ◽  
pp. H1383-H1390 ◽  
Author(s):  
P. J. Fadel ◽  
S. Ogoh ◽  
D. E. Watenpaugh ◽  
W. Wasmund ◽  
A. Olivencia-Yurvati ◽  
...  

We sought to determine whether carotid baroreflex (CBR) control of muscle sympathetic nerve activity (MSNA) was altered during dynamic exercise. In five men and three women, 23.8 ± 0.7 (SE) yr of age, CBR function was evaluated at rest and during 20 min of arm cycling at 50% peak O2uptake using 5-s periods of neck pressure and neck suction. From rest to steady-state arm cycling, mean arterial pressure (MAP) was significantly increased from 90.0 ± 2.7 to 118.7 ± 3.6 mmHg and MSNA burst frequency (microneurography at the peroneal nerve) was elevated by 51 ± 14% ( P < 0.01). However, despite the marked increases in MAP and MSNA during exercise, CBR-Δ%MSNA responses elicited by the application of various levels of neck pressure and neck suction ranging from +45 to −80 Torr were not significantly different from those at rest. Furthermore, estimated baroreflex sensitivity for the control of MSNA at rest was the same as during exercise ( P = 0.74) across the range of neck chamber pressures. Thus CBR control of sympathetic nerve activity appears to be preserved during moderate-intensity dynamic exercise.


1994 ◽  
Vol 77 (1) ◽  
pp. 231-235 ◽  
Author(s):  
C. A. Ray ◽  
J. A. Pawelczyk

Previous studies suggested that endogenous opiates may attenuate the cardiovascular and sympathetic adjustments to static exercise. We tested whether this effect originates from exercising skeletal muscle. Eight men performed 2 min of static handgrip (30% maximum) followed by 2 min of posthandgrip muscle ischemia after three interventions: 1) control, 2) intra-arterial injection of naloxone HCl (60 micrograms) or vehicle (saline) in the exercising arm, and 3) systemic infusion of naloxone (4 mg) or vehicle. Naloxone and vehicle trials were performed double blind on separate days. Preexercise baseline muscle sympathetic nerve activity (burst frequency), heart rate, and blood pressure were similar across interventions on either day. During static handgrip, control, intra-arterial, and systemic administration of vehicle and naloxone elicited similar increases in total muscle sympathetic nerve activity (58 +/- 24 vs. 68 +/- 26, 146 +/- 49 vs. 132 +/- 42, 137 +/- 54 vs. 164 +/- 44%, respectively), heart rate (9 +/- 2 vs. 8 +/- 3, 16 +/- 3 vs. 16 +/- 2, 20 +/- 4 vs. 19 +/- 3 beats/min, respectively), and mean arterial pressure (22 +/- 4 vs. 21 +/- 4, 29 +/- 5 vs. 26 +/- 3, 28 +/- 4 vs. 27 +/- 4 mmHg, respectively). Additionally, there were no differences between vehicle and naloxone trials during posthandgrip muscle ischemia. Thus, contrary to previous reports, we conclude that the endogenous opiate peptide system does not modulate cardiovascular and sympathetic responses to brief periods of static exercise or muscle ischemia in humans.


2016 ◽  
Vol 121 (5) ◽  
pp. 1065-1073 ◽  
Author(s):  
Karambir Notay ◽  
Jeremy D. Seed ◽  
Anthony V. Incognito ◽  
Connor J. Doherty ◽  
Massimo Nardone ◽  
...  

Resting muscle sympathetic nerve activity (MSNA) demonstrates high intraindividual reproducibility when sampled over 5–30 min epochs, although shorter sampling durations are commonly used before and during a stress to quantify sympathetic responsiveness. The purpose of the present study was to examine the intratest validity and reliability of MSNA sampled over 2 and 1 min and 30 and 15 s epoch durations. We retrospectively analyzed 68 resting fibular nerve microneurographic recordings obtained from 53 young, healthy participants (37 men; 23 ± 6 yr of age). From a stable 7-min resting baseline, MSNA (burst frequency and incidence, normalized mean burst amplitude, total burst area) was compared among each epoch duration and a standard 5-min control. Bland-Altman plots were used to determine agreement and bias. Three sequential MSNA measurements were collected using each sampling duration to calculate absolute and relative reliability (coefficients of variation and intraclass correlation coefficients). MSNA values were similar among each sampling duration and the 5-min control (all P > 0.05), highly correlated ( r = 0.69–0.93; all P < 0.001), and demonstrated no evidence of fixed bias (all P > 0.05). A consistent proportional bias ( P < 0.05) was present for MSNA burst frequency (all sampling durations) and incidence (1 min and 30 and 15 s), such that participants with low and high average MSNA underestimated and overestimated the true value, respectively. Reliability decreased progressively using the 30- and 15-s sampling durations. In conclusion, short 2 and 1 min and 30 s sampling durations can provide valid and reliable measures of MSNA, although increased sample size may be required for epochs ≤30 s, due to poorer reliability.


2003 ◽  
Vol 28 (3) ◽  
pp. 342-355 ◽  
Author(s):  
J. Kevin Shoemaker ◽  
Cynthia S. Hogeman ◽  
Lawrence I. Sinoway

The purpose of this study was to examine whether 14 days of head-down tilt bed rest (HDBR) alters autonomic regulation during Valsalva's manoeuvre (VM) and if this would predict blood pressure control during a 60° head-up tilt (HUT) test. To examine autonomic control of blood pressure, we measured the changes in systolic (ΔSBP) and diastolic (ΔDBP) blood pressure between baseline and the early straining (Phase IIE) period of VM (20 sec straining to 40 mmHg; N = 7) in conjunction with changes in muscle sympathetic nerve activity (MSNA; microneurography) burst frequency (B/min) and total activity (%Δ) from baseline over the 20-sec straining period. MSNA data were successfully recorded from 6 of the 7 individuals. The averaged responses from three repeated VMs performed in the supine position were compared between the pre- and post-HDBR tests. Compared with the pre-HDBR test, a greater reduction in SBP, DBP, and MAP was observed during Phase IIE following HDBR, p < 0.05. The increase in MSNA burst frequency during straining was augmented in the post- compared with the pre-HDBR test, p < 0.0001, as was the Phase IV blood pressure overshoot, p < 0.05. Although all subjects completed the 20-min pre-HDBR tilt test without evidence of hypotension or orthostatic intolerance, the post-HDBR test was stopped early in 5 of the 7 subjects due to systolic hypotension. The responses during the VM suggest that acute autonomic adjustments to rapid blood pressure changes are preserved after bed rest. Furthermore, MSNA and blood pressure responses during VM did not predict blood pressure control during orthostasis following HDBR. Key words: muscle sympathetic nerve activity, blood pressure, orthostatic tolerance, head-up tilt


2019 ◽  
Vol 127 (2) ◽  
pp. 464-472
Author(s):  
Connor J. Doherty ◽  
Trevor J. King ◽  
Anthony V. Incognito ◽  
Jordan B. Lee ◽  
Andrew D. Shepherd ◽  
...  

The influence of muscle sympathetic nerve activity (MSNA) responses on local vascular conductance during exercise are not well established. Variations in exercise mode and active muscle mass can produce divergent MSNA responses. Therefore, we sought to examine the effects of small- versus large-muscle mass dynamic exercise on vascular conductance and MSNA responses in the inactive limb. Thirty-five participants completed two study visits in a randomized order. During visit 1, superficial femoral artery (SFA) blood flow (Doppler ultrasound) was assessed at rest and during steady-state rhythmic handgrip (RHG; 1:1 duty cycle, 40% maximal voluntary contraction), one-leg cycling (17 ± 3% peak power output), and concurrent exercise at the same intensities. During visit 2, MSNA (contralateral fibular nerve microneurography) was acquired successfully in 12/35 participants during the same exercise modes. SFA blood flow increased during RHG ( P < 0.0001) and concurrent exercise ( P = 0.03) but not cycling ( P = 0.91). SFA vascular conductance was unchanged during RHG ( P = 0.88) but reduced similarly during concurrent and cycling exercise (both P < 0.003). RHG increased MSNA burst frequency ( P = 0.04) without altering burst amplitude ( P = 0.69) or total MSNA ( P = 0.26). In contrast, cycling and concurrent exercise had no effects on MSNA burst frequency (both P ≥ 0.10) but increased burst amplitude (both P ≤ 0.001) and total MSNA (both P ≤ 0.007). Across all exercise modes, the changes in MSNA burst amplitude and SFA vascular conductance were correlated negatively ( r = −0.43, P = 0.02). In summary, the functional vascular consequences of alterations in sympathetic outflow to skeletal muscle are most closely associated with changes in MSNA burst amplitude, but not frequency, during low-intensity dynamic exercise. NEW & NOTEWORTHY Low-intensity small- versus large-muscle mass exercise can elicit divergent effects on muscle sympathetic nerve activity (MSNA). We examined the relationships between changes in MSNA (burst frequency and amplitude) and superficial femoral artery (SFA) vascular conductance during rhythmic handgrip, one-leg cycling, and concurrent exercise in the inactive leg. Only changes in MSNA burst amplitude were inversely associated with SFA vascular conductance responses. This result highlights the functional importance of measuring MSNA burst amplitude during exercise.


2016 ◽  
Vol 310 (11) ◽  
pp. R1134-R1143 ◽  
Author(s):  
Andrea Marchi ◽  
Vlasta Bari ◽  
Beatrice De Maria ◽  
Murray Esler ◽  
Elisabeth Lambert ◽  
...  

Muscle sympathetic nerve activity (MSNA) variability is traditionally computed through a low-pass filtering procedure that requires normalization. We proposed a new beat-to-beat MSNA variability computation that preserves dimensionality typical of an integrated neural discharge (i.e., bursts per unit of time). The calibrated MSNA (cMSNA) variability technique is contrasted with the traditional uncalibrated MSNA (ucMSNA) version. The powers of cMSNA and ucMSNA variabilities in the low-frequency (LF, from 0.04 to 0.15 Hz) band were computed with those of the heart period (HP) of systolic and diastolic arterial pressure (SAP and DAP, respectively) in seven healthy subjects (age, 20–28 years; median, 22 years; 5 women) during a graded head-up tilt. Subjects were sequentially tilted at 0°, 20°, 30°, 40°, and 60° table inclinations. The LF powers of ucMSNA and HP variabilities were expressed in normalized units (LFnu), whereas all remaining spectral markers were expressed in absolute units. We found that 1) the LF power of cMSNA variability was positively correlated with tilt angle, whereas the LFnu power of the ucMSNA series was uncorrelated; 2) the LF power of cMSNA variability was correlated with LF powers of SAP and DAP, LFnu power of HP and noradrenaline concentration, whereas the relationship of the LFnu power of ucMSNA variability to LF powers of SAP and DAP was weaker and that to LFnu power of HP was absent; and 3) the stronger relationship of cMSNA variability to SAP and DAP spectral markers compared with the ucMSNA series was confirmed individually. The cMSNA variability appears to be more suitable in describing sympathetic control in humans than traditional ucMSNA variability.


Sign in / Sign up

Export Citation Format

Share Document