Load-dependent effects of duodenal lipid on antropyloroduodenal motility, plasma CCK and PYY, and energy intake in healthy men

2007 ◽  
Vol 293 (6) ◽  
pp. R2170-R2178 ◽  
Author(s):  
Amelia N. Pilichiewicz ◽  
Penny Papadopoulos ◽  
Ixchel M. Brennan ◽  
Tanya J. Little ◽  
James H. Meyer ◽  
...  

Both load and duration of small intestinal lipid infusion affect antropyloroduodenal motility and CCK and peptide YY (PYY) release at loads comparable to and higher than the normal gastric emptying rate. We determined 1) the effects of intraduodenal lipid loads well below the mean rate of gastric emptying on, and 2) the relationships between antropyloroduodenal motility, CCK, PYY, appetite, and energy intake. Sixteen healthy males were studied on four occasions in double-blind, randomized fashion. Antropyloroduodenal motility, plasma CCK and PYY, and appetite perceptions were measured during 50-min IL (Intralipid) infusions at: 0.25 (IL0.25), 1.5 (IL1.5), and 4 (IL4) kcal/min or saline (control), after which energy intake at a buffet meal was quantified. IL0.25 stimulated isolated pyloric pressure waves (PWs) and CCK release, albeit transiently, and suppressed antral PWs, PW sequences, and hunger ( P < 0.05) but had no effect on basal pyloric pressure or PYY when compared with control. Loads ≥ 1.5 kcal/min were required for the stimulation of basal pyloric pressures and PYY and suppression of duodenal PWs ( P < 0.05). All of these effects were related to the lipid load ( R > 0.5 or < −0.5, P < 0.05). Only IL4 reduced energy intake (in kcal: control, 1,289 ± 62; IL0.25, 1,282 ± 44; IL1.5, 1,235 ± 71; and IL4, 1,139 ± 65 compared with control and IL0.25, P < 0.05). In conclusion, in healthy males the effects of intraduodenal lipid on antropyloroduodenal motility, plasma CCK and PYY, appetite, and energy intake are load dependent, and the threshold loads required to elicit responses vary for these parameters.

2006 ◽  
Vol 91 (9) ◽  
pp. 3296-3302 ◽  
Author(s):  
F. Levin ◽  
T. Edholm ◽  
P. T. Schmidt ◽  
P. Grybäck ◽  
H. Jacobsson ◽  
...  

Abstract Context: Ghrelin is produced primarily by enteroendocrine cells in the gastric mucosa and increases gastric emptying in patients with gastroparesis. Main Objective: The objective of the study was to evaluate the effect of ghrelin on gastric emptying, appetite, and postprandial hormone secretion in normal volunteers. Design: This was a randomized, double-blind, crossover study. Subjects: Subjects included normal human volunteers and patients with GH deficiency. Intervention: Intervention included saline or ghrelin (10 pmol/kg·min) infusion for 180 min after intake of a radioactively labeled omelette (310 kcal) or GH substitution in GH-deficient patients. Main Outcome Measures: Measures consisted of gastric empty-ing parameters and postprandial plasma levels of ghrelin, cholecystokinin, glucagon-like peptide-1, peptide YY, and motilin. Results: The emptying rate was significantly faster for ghrelin (1.26 ± 0.1% per minute), compared with saline (0.83% per minute) (P &lt; 0.001). The lag phase (16.2 ± 2.2 and 26.5 ± 3.8 min) and half-emptying time (49.4 ± 3.9 and 75.6 ± 4.9 min) of solid gastric emptying were shorter during ghrelin infusion, compared with infusion of saline (P &lt; 0.001). The postprandial peak in plasma concentration for cholecystokinin and glucagon-like peptide-1 occurred earlier and was higher during ghrelin infusion. There was no significant effect of ghrelin on plasma motilin or peptide YY. There was no difference in gastric emptying before and after GH substitution. Conclusion: Our results demonstrate that ghrelin increases the gastric emptying rate in normal humans. The effect does not seem to be mediated via GH or motilin but may be mediated by the vagal nerve or directly on ghrelin receptors in the stomach. Ghrelin receptor agonists may have a role as prokinetic agents.


2009 ◽  
Vol 296 (4) ◽  
pp. R912-R920 ◽  
Author(s):  
Radhika V. Seimon ◽  
Kate L. Feltrin ◽  
James H. Meyer ◽  
Ixchel M. Brennan ◽  
Judith M. Wishart ◽  
...  

Intraduodenal infusions of both lipid and glucose modulate antropyloroduodenal motility and stimulate plasma CCK, with lipid being more potent than glucose. Both stimulate glucagon-like peptide-1, but only lipid stimulates peptide YY (PYY), while only glucose raises blood glucose and stimulates insulin. When administered in combination, lipid and carbohydrate may, thus, have additive effects on energy intake. However, elevated blood glucose levels do not suppress energy intake, and the effect of insulin is controversial. We hypothesized that increasing the ratio of maltodextrin, a complex carbohydrate, relative to lipid would be associated with a reduction in effects on antropyloroduodenal pressures, gut hormones, appetite, and energy intake, when compared with lipid alone. Ten healthy males were studied on three occasions in double-blind, randomized order. Antropyloroduodenal pressures, plasma CCK, PYY and insulin, blood glucose, and appetite were measured during 90-min intraduodenal infusions of 1) 3 kcal/min lipid (L3), 2) 2 kcal/min lipid and 1 kcal/min maltodextrin (L2/CHO1), or 3) 1 kcal/min lipid and 2 kcal/min maltodextrin (L1/CHO2). Energy intake at a buffet lunch consumed immediately after the infusion was quantified. Reducing the lipid (thus, increasing the carbohydrate) content of the infusion was associated with reduced stimulation of basal pyloric pressures ( r = 0.76, P < 0.01), plasma CCK ( r = 0.66, P < 0.01), and PYY ( r = 0.98, P < 0.001), and reduced suppression of antral ( r = −0.64, P < 0.05) and duodenal ( r = −0.69, P < 0.05) pressure waves, desire-to-eat ( r = −0.8, P < 0.001), and energy intake ( r = 0.74, P < 0.01), with no differences in phasic (isolated) pyloric pressures. In conclusion, in healthy males, intraduodenal lipid is a more potent modulator of gut function, associated with greater suppression of energy intake, when compared with isocaloric combinations of lipid and maltodextrin.


2006 ◽  
Vol 290 (3) ◽  
pp. R668-R677 ◽  
Author(s):  
Amelia N. Pilichiewicz ◽  
Tanya J. Little ◽  
Ixchel M. Brennan ◽  
James H. Meyer ◽  
Judith M. Wishart ◽  
...  

Enterally administered lipid modulates antropyloroduodenal motility, gut hormone release, appetite, and energy intake. We hypothesized that these effects would be dependent on both the load, and duration, of small intestinal exposure to lipid. Eleven healthy men were studied on four occasions in a double-blind, randomized, fashion. Antropyloroduodenal motility, plasma CCK and peptide YY (PYY) concentrations, and appetite perceptions were measured during intraduodenal infusion of lipid (Intralipid) at 1) 1.33 kcal/min for 50 min, 2) 4 kcal/min for 50 min, and 3) 1.33 kcal/min for 150 min, or 4) saline for 150 min. Immediately after the infusions, energy intake was quantified. Pressure wave sequences (PWSs) were suppressed, and basal pyloric pressure, isolated pyloric pressure waves (IPPWs), plasma CCK and PYY stimulated (all P < 0.05), during the first 50 min of lipid infusion, in a load-dependent fashion. The effect of the 4 kcal/min infusion was sustained so that the suppression of antral pressure waves (PWs) and PWSs and increase in PYY remained evident after cessation of the infusion (all P < 0.05). The prolonged lipid infusion (1.33 kcal/min for 150 min) suppressed antral PWs, stimulated CCK and PYY and basal pyloric pressure (all P < 0.05), and tended to stimulate IPPWs when compared with saline throughout the entire infusion period. There was no significant effect of any of the lipid infusions on appetite or energy intake, although nausea was slightly higher ( P < 0.05) with the 4 kcal/min infusion. In conclusion, both the load, and duration, of small intestinal lipid influence antropyloroduodenal motility and patterns of CCK and PYY release.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1788 ◽  
Author(s):  
Penelope C. E. Fitzgerald ◽  
Benoit Manoliu ◽  
Benjamin Herbillon ◽  
Robert E. Steinert ◽  
Michael Horowitz ◽  
...  

In humans, phenylalanine stimulates plasma cholecystokinin (CCK) and pyloric pressures, both of which are important in the regulation of energy intake and gastric emptying. Gastric emptying is a key determinant of postprandial blood glucose. We evaluated the effects of intragastric phenylalanine on appetite perceptions and subsequent energy intake, and the glycaemic response to, and gastric emptying of, a mixed-nutrient drink. The study consisted of two parts, each including 16 healthy, lean males (age: 23 ± 1 years). In each part, participants received on three separate occasions, in randomised, double-blind fashion, 5 g (Phe-5 g) or 10g (‘Phe-10 g) L-phenylalanine, or control, intragastrically, 30 min before a standardised buffet-meal (part A), or a standardised mixed-nutrient drink (part B). In part A, plasma CCK and peptide-YY (PYY), and appetite perceptions, were measured at baseline, after phenylalanine alone, and following the buffet-meal, from which energy intake was assessed. In part B, plasma glucose, glucagon-like peptide-1 (GLP-1), insulin and glucagon were measured at baseline, after phenylalanine alone, and for 2 h following the drink. Gastric emptying of the drink was also measured by 13C-acetate breath-test. Phe-10 g, but not Phe-5 g, stimulated plasma CCK (p = 0.01) and suppressed energy intake (p = 0.012); energy intake was correlated with stimulation of CCK (r = −0.4, p = 0.027), and tended to be associated with stimulation of PYY (r = −0.31, p = 0.082). Both Phe-10 g and Phe-5 g stimulated insulin and glucagon (all p < 0.05), but not GLP-1. Phe-10 g, but not Phe-5 g, reduced overall plasma glucose (p = 0.043) and peak plasma glucose (p = 0.017) in response to the mixed-nutrient drink. Phenylalanine had no effect on gastric emptying of the drink. In conclusion, our observations indicate that the energy intake-suppressant effect of phenylalanine is related to the stimulation of CCK and PYY, while the glucoregulatory effect may be independent of stimulation of plasma GLP-1 or slowing of gastric emptying.


2012 ◽  
Vol 108 (4) ◽  
pp. 755-758 ◽  
Author(s):  
Charlotte J. Harden ◽  
Adam N. Jones ◽  
Tannia Maya-Jimenez ◽  
Margo E. Barker ◽  
Natalie J. Hepburn ◽  
...  

Long-chain fatty acids have been shown to suppress appetite and reduce energy intake (EI) by stimulating the release of gastrointestinal hormones such as cholecystokinin (CCK). The effect of NEFA acyl chain length on these parameters is not comprehensively understood. Anin vitroscreen tested the capacity of individual NEFA (C12 to C22) to trigger CCK release. There was a gradient in CCK release with increasing chain length. DHA (C22) stimulated significantly (P < 0·01) more CCK release than all other NEFA tested. Subsequently, we conducted a randomised, controlled, crossover intervention study using healthy males (n18). The effects of no treatment (NT) and oral doses of emulsified DHA-rich (DHA) and oleic acid (OA)-rich oils were compared using 24 h EI as the primary endpoint. Participants reported significantly (P = 0·039) lower total daily EI (29 % reduction) with DHA compared to NT. There were no differences between DHA compared to OA and OA compared to NT. There was no between-treatment difference in the time to, or EI of, the first post-intervention eating occasion. It is concluded that NEFA stimulate CCK release in a chain length-dependent manner up to C22. These effects may be extended to thein vivosetting, as a DHA-based emulsion significantly reduced short-term EI.


1999 ◽  
Vol 19 (2_suppl) ◽  
pp. 176-178 ◽  
Author(s):  
Dae Joong Kim ◽  
Woo-Heon Kang ◽  
Hae Young Kim ◽  
Bang Hoon Lee ◽  
Bum Kim ◽  
...  

Methods and Patients We evaluated gastric emptying time (GET) with a technetium (Tc) 99m-sulfur colloid gastric emptying scan in 11 patients on continuous ambulatory peritoneal dialysis (CAPO) (6 males, 5 females) and in 14 controls. We investigated the effect of dialysate dwell on GET by studying the subjects twice: once without dialysate in the abdomen (drained) and once with 2 L of dialysate in the abdomen (full). We also investigated the relationship between body surface area (BSA) and delayed gastric emptying. Results (1) The mean gastric emptying rate in 120 minutes in patients on CAPO when drained (67.8% ± 13.4%) was not different from that in controls (65.4% ± 8.6%). (2) The mean gastric emptying rate in 120 minutes in patients on CAPO when full was significantly slower than that when drained (55.6% ± 14.6% versus 67.8% ± 13.4%, p < 0.05). In four of the 11 patients (36.4%), gastric emptying was extremely delayed from normal to abnormal range when full. (3) The BSA of patients who had extremely delayed GET from normal to abnormal range was smaller than that of patients who had minimal delayed or unchanged GET when full (1.5 ± 0.11 m2 versus 1.74 ± 0.22 m2). Conclusion This study showed that patients on CAPO had normal gastric emptying when drained, and that gastric emptying was delayed by dialysate dwell, especially in patients who has less than 1.5 m2 of body surface area. Therefore, we suggest that, based on adequacy, intermittent nocturnal peritoneal dialysis or a small volume of dialysate be considered for patients with small body surface area.


2007 ◽  
Vol 293 (3) ◽  
pp. E743-E753 ◽  
Author(s):  
Amelia N. Pilichiewicz ◽  
Reawika Chaikomin ◽  
Ixchel M. Brennan ◽  
Judith M. Wishart ◽  
Christopher K. Rayner ◽  
...  

Gastric emptying is a major determinant of glycemia, gastrointestinal hormone release, and appetite. We determined the effects of different intraduodenal glucose loads on glycemia, insulinemia, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and cholecystokinin (CCK), antropyloroduodenal motility, and energy intake in healthy subjects. Blood glucose, plasma hormone, and antropyloroduodenal motor responses to 120-min intraduodenal infusions of glucose at 1) 1 (“G1”), 2) 2 (“G2”), and 3) 4 (“G4”) kcal/min or of 4) saline (“control”) were measured in 10 healthy males in double-blind, randomized fashion. Immediately after each infusion, energy intake at a buffet meal was quantified. Blood glucose rose in response to all glucose infusions ( P < 0.05 vs. control), with the effect of G4 and G2 being greater than that of G1 ( P < 0.05) but with no difference between G2 and G4. The rises in insulin, GLP-1, GIP, and CCK were related to the glucose load ( r > 0.82, P < 0.05). All glucose infusions suppressed antral ( P < 0.05), but only G4 decreased duodenal, pressure waves ( P < 0.01), resulted in a sustained stimulation of basal pyloric pressure ( P < 0.01), and decreased energy intake ( P < 0.05). In conclusion, variations in duodenal glucose loads have differential effects on blood glucose, plasma insulin, GLP-1, GIP and CCK, antropyloroduodenal motility, and energy intake in healthy subjects. These observations have implications for strategies to minimize postprandial glycemic excursions in type 2 diabetes.


1997 ◽  
Vol 87 (4) ◽  
pp. 765-770 ◽  
Author(s):  
D. B. Murphy ◽  
J. A. Sutton ◽  
L. F. Prescott ◽  
M. B. Murphy

Background Opioids delay gastric emptying, which in turn may increase the risk of vomiting and pulmonary aspiration. Naloxone reverses this opiate action on gastric emptying, but it is not known whether this effect in humans is mediated by central or peripheral opiate antagonism. The importance of peripheral opioid receptor antagonism in modulating opioid-induced delay in gastric emptying was evaluated using methylnaltrexone, a quaternary derivative of the opiate antagonist naltrexone, which does not cross the blood-brain barrier. Methods In a randomized, double-blind, crossover placebo-controlled study, 11 healthy volunteers were given either placebo (saline), 0.09 mg/kg morphine, or 0.09 mg/kg morphine plus 0.3 mg/kg methylnaltrexone on three separate occasions before ingesting 500 ml deionized water. The rate of gastric emptying was measured by two methods: a noninvasive epigastric bioimpedance technique and the acetaminophen absorption test. Results The epigastric bioimpedance technique was sufficiently sensitive to detect opioid-induced changes in the rate of gastric emptying. The mean +/- SD time taken for the gastric volume to decrease to 50% (t0.5) after placebo was 5.5 +/- 2.1 min. Morphine prolonged gastric emptying to (t0.5) of 21 +/- 9.0 min (P &lt; 0.03). Methylnaltrexone given concomitantly with morphine reversed the morphine-induced delay in gastric emptying to a t0.5 of 7.4 +/- 3.0 (P &lt; 0.04). Maximum concentrations and area under the concentration curve from 0 to 90 min of serum acetaminophen concentrations after morphine were significantly different from placebo and morphine administered concomitantly with methylnaltrexone (P &lt; 0.05). No difference in maximum concentration or area under the concentration curve from 0 to 90 min was noted between placebo and methylnaltrexone coadministered with morphine. Conclusions The attenuation of morphine-induced delay in gastric emptying by methylnaltrexone suggests that the opioid effect is mediated outside the central nervous system. Methylnaltrexone may have the potential to decrease the side effects of opioid medications, which are mediated peripherally, while maintaining the central analgesia effect of the opioid.


2004 ◽  
Vol 92 (3) ◽  
pp. 447-459 ◽  
Author(s):  
K. M. Sanggaard ◽  
J. J. Holst ◽  
J. F. Rehfeld ◽  
B. Sandström ◽  
A. Raben ◽  
...  

Longitudinal studies indicate that milk and fermented milk products lower basal plasma cholesterol concentrations, despite their high content of saturated fat, and therefore have favourable health effects. However, there have been few studies on the postprandial effects of milk products. The present study compared the effect of whole milk with a fermented milk, A-38, on postprandial carbohydrate and lipid metabolism, gastric emptying and appetite. Eight healthy young men participated. On the two test days, they arrived fasting for collection of baseline values before consuming the meals, which for a 75 kg subject consisted of 1·4 litre milk or fermented milk, plus 165 mg [13C]acetate (for later determination of gastric emptying by a [13C]acetate breath test). Lactose (15 g) was added to the A-38 meal to equalize the lactose content. Postprandially the A-38 meal resulted in a slower gastric emptying rate than milk (P>0·001). Furthermore, the A-38 meal resulted in a greater increase and a quicker decrease of the triacylglycerol content in all lipoprotein fractions (LDL-fraction,P>0·05; other fractions,P>0·001) and of the gastrointestinal hormones (cholecystokinin and peptide YY,P>0·05; gastric inhibitory polypeptide and glucagon-like polypeptide-1,P>0·001). There were no significant differences in appetite sensations (measured by visual analogue scale) or in the glucose and insulin response (P<0·10). The slower emptying rate of the liquid phase after the A-38 meal is probably due to the higher viscosity of A-38. The lower and more prolonged triacylglycerol response after the milk meal might be caused by coagulation of milk in the stomach.


Sign in / Sign up

Export Citation Format

Share Document