Insulin and metabolic efficiency in rats. II. Effects of NE and cold exposure

1986 ◽  
Vol 251 (6) ◽  
pp. R1118-R1125
Author(s):  
T. J. Bartness ◽  
C. J. Billington ◽  
A. S. Levine ◽  
J. E. Morley ◽  
N. E. Rowland ◽  
...  

The role of insulin in metabolic efficiency (ME, i.e., efficiency of body wt gain) was examined under conditions of maximal energy expenditure in control and diabetic rats. Long-lasting insulin was administered using a protocol that did not affect food intake and increased ME in both groups. Half the animals were injected chronically with norepinephrine (NE). NE alone in controls decreased body weight and ME and increased brown adipose tissue (BAT) growth, thermogenic potential [cytochrome c oxidase activity (COA)], and lipoprotein lipases (LPL) activity; however, in diabetics, body weight, ME, and food intake all decreased and only BAT LPL activity and DNA content increased. The combination of NE and insulin increased BAT protein and COA in diabetics; in controls, all BAT measures were further increased and ME was intermediate to that of either treatment alone. Cold exposure decreased body weight and ME, increased food intake and qualitatively produced similar increases in BAT growth, COA, and LPL activity in both controls and diabetics. In diabetics, combined cold exposure and insulin did not affect the increase in BAT growth or LPL activity resulting from either treatment alone, but in controls this combination decreased BAT growth and COA. It is concluded that, even under conditions of maximal energy expenditure, both extremes of basal insulin status result in decreased BAT growth and thermogenic potential, but have opposite effects on ME.

1986 ◽  
Vol 251 (6) ◽  
pp. R1109-R1117
Author(s):  
T. J. Bartness ◽  
C. J. Billington ◽  
A. S. Levine ◽  
J. E. Morley ◽  
D. M. Brown ◽  
...  

The role of insulin and brown adipose tissue (BAT) thermogenesis in metabolic efficiency (ME, the efficiency of body wt gain) was examined in rats with varied basal insulin status. Long-lasting insulin was administered using a protocol that did not alter food intake, yet increased ME in both groups. Half the rats were fed sucrose to stimulate BAT growth and thermogenesis. Insulin overrode the exaggerated decrease in ME in sucrose-fed diabetics, with only partial attenuation in controls. Interscapular BAT (IBAT) lipoprotein lipase activity was decreased in diabetic rats, restored by insulin treatment, and not affected in controls. Sucrose-fed diabetics and controls had their IBAT sham or bilaterally surgically denervated. Insulin decreased the thermogenic potential of BAT [cytochrome oxidase activity (COA)] in intact controls and diabetics; in the latter, insulin restored COA independent of BAT innervation. We conclude that insulin can increase ME without an associated increase in energy intake, regardless of basal insulin status, both insulin deficiency and excess decrease BAT thermogenic potential (COA), and hyperinsulinemia-induced increases in ME may result from decreased BAT mitochondrial proliferation.


Endocrinology ◽  
2014 ◽  
Vol 156 (2) ◽  
pp. 411-418 ◽  
Author(s):  
Pierre Cardinal ◽  
Luigi Bellocchio ◽  
Omar Guzmán-Quevedo ◽  
Caroline André ◽  
Samantha Clark ◽  
...  

The paraventricular nucleus of the hypothalamus (PVN) regulates energy balance by modulating not only food intake, but also energy expenditure (EE) and brown adipose tissue thermogenesis. To test the hypothesis that cannabinoid type 1 (CB1) receptor in PVN neurons might control these processes, we used the Cre/loxP system to delete CB1 from single-minded 1 (Sim1) neurons, which account for the majority of PVN neurons. On standard chow, mice lacking CB1 receptor in Sim1 neurons (Sim1-CB1-knockout [KO]) had food intake, body weight, adiposity, glucose metabolism, and EE comparable with wild-type (WT) (Sim1-CB1-WT) littermates. However, maintenance on a high-fat diet revealed a gene-by-diet interaction whereby Sim1-CB1-KO mice had decreased adiposity, improved insulin sensitivity, and increased EE, whereas feeding behavior was similar to Sim1-CB1-WT mice. Additionally, high-fat diet-fed Sim1-CB1-KO mice had increased mRNA expression of the β3-adrenergic receptor, as well as of uncoupling protein-1, cytochrome-c oxidase subunit IV and mitochondrial transcription factor A in the brown adipose tissue, all molecular changes suggestive of increased thermogenesis. Pharmacological studies using β-blockers suggested that modulation of β-adrenergic transmission play an important role in determining EE changes observed in Sim1-CB1-KO. Finally, chemical sympathectomy abolished the obesity-resistant phenotype of Sim1-CB1-KO mice. Altogether, these findings reveal a diet-dependent dissociation in the CB1 receptor control of food intake and EE, likely mediated by the PVN, where CB1 receptors on Sim1-positive neurons do not impact food intake but hinder EE during dietary environmental challenges that promote body weight gain.


2009 ◽  
Vol 68 (4) ◽  
pp. 401-407 ◽  
Author(s):  
Barbara Cannon ◽  
Jan Nedergaard

According to the adipostat hypothesis for body-weight control, alterations in body weight should always be compensated by adequate alterations in food intake and thermogenesis. Thus, increased thermogenesis should not be able to counteract obesity because food intake would be increased. However evidence is presented here that thermogenesis in different forms (through artificial uncouplers, exercise, cold exposure) may counteract obesity and is not always fully compensated by increased food intake. Correspondingly, a decreased capacity for metaboloregulatory thermogenesis (i.e. non-functional brown adipose tissue) may in itself lead to obesity. This is evident in mice and may be valid for human subjects, as a substantial proportion of adults possess brown adipose tissue, and those with less or without brown adipose tissue would seem to be more prone to obesity. Thus, increased thermogenesis may counteract obesity, without dietary intervention.


2011 ◽  
Vol 300 (6) ◽  
pp. E1002-E1011 ◽  
Author(s):  
Bart C. De Jonghe ◽  
Matthew R. Hayes ◽  
Ryoichi Banno ◽  
Karolina P. Skibicka ◽  
Derek J. Zimmer ◽  
...  

The adipose tissue-derived hormone leptin regulates energy balance through catabolic effects on central circuits, including proopiomelanocortin (POMC) neurons. Leptin activation of POMC neurons increases thermogenesis and locomotor activity. Protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of leptin signaling. POMC neuron-specific deletion of PTP1B in mice results in reduced high-fat diet-induced body weight and adiposity gain due to increased energy expenditure and greater leptin sensitivity. Mice lacking the leptin gene ( ob/ob mice) are hypothermic and cold intolerant, whereas leptin delivery to ob/ob mice induces thermogenesis via increased sympathetic activity to brown adipose tissue (BAT). Here, we examined whether POMC PTP1B mediates the thermoregulatory response of CNS leptin signaling by evaluating food intake, body weight, core temperature (TC), and spontaneous physical activity (SPA) in response to either exogenous leptin or 4-day cold exposure (4°C) in male POMC-Ptp1b-deficient mice compared with wild-type controls. POMC-Ptp1b −/− mice were hypersensitive to leptin-induced food intake and body weight suppression compared with wild types, yet they displayed similar leptin-induced increases in TC. Interestingly, POMC-Ptp1b −/− mice had increased BAT weight and elevated plasma triiodothyronine (T3) levels in response to a 4-day cold challenge, as well as reduced SPA 24 h after cold exposure, relative to controls. These data show that PTP1B in POMC neurons plays a role in short-term cold-induced reduction of SPA and may influence cold-induced thermogenesis via enhanced activation of the thyroid axis.


2017 ◽  
Vol 313 (6) ◽  
pp. E731-E736 ◽  
Author(s):  
Wenjuan Wang ◽  
Xiangzhi Meng ◽  
Chun Yang ◽  
Dongliang Fang ◽  
Xuemeng Wang ◽  
...  

Loss of body weight and fat mass is one of the nonmotor symptoms of Parkinson’s disease (PD). Weight loss is due primarily to reduced energy intake and increased energy expenditure. Whereas inadequate energy intake in PD patients is caused mainly by appetite loss and impaired gastrointestinal absorption, the underlying mechanisms for increased energy expenditure remain largely unknown. Brown adipose tissue (BAT), a key thermogenic tissue in humans and other mammals, plays an important role in thermoregulation and energy metabolism; however, it has not been tested whether BAT is involved in the negative energy balance in PD. Here, using the 6-hydroxydopamine (6-OHDA) rat model of PD, we found that the activity of sympathetic nerve (SN), the expression of Ucp1 in BAT, and thermogenesis were increased in PD rats. BAT sympathetic denervation blocked sympathetic activity and decreased UCP1 expression in BAT and attenuated the loss of body weight in PD rats. Interestingly, sympathetic denervation of BAT was associated with decreased sympathetic tone and lipolysis in retroperitoneal and epididymal white adipose tissue. Our data suggeste that BAT-mediated thermogenesis may contribute to weight loss in PD.


2021 ◽  
Author(s):  
Sebastian Dieckmann ◽  
Akim Strohmeyer ◽  
Monja Willershaeuser ◽  
Stefanie Maurer ◽  
Wolfgang Wurst ◽  
...  

Objective Activation of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) upon cold stimulation leads to substantial increase in energy expenditure to defend body temperature. Increases in energy expenditure after a high caloric food intake, termed diet-induced thermogenesis, are also attributed to BAT. These properties render BAT a potential target to combat diet-induced obesity. However, studies investigating the role of UCP1 to protect against diet-induced obesity are controversial and rely on the phenotyping of a single constitutive UCP1-knockout model. To address this issue, we generated a novel UCP1-knockout model by Cre-mediated deletion of Exon 2 in the UCP1 gene. We studied the effect of constitutive UCP1 knockout on metabolism and the development of diet-induced obesity. Methods UCP1 knockout and wildtype mice were housed at 30°C and fed a control diet for 4-weeks followed by 8-weeks of high-fat diet. Body weight and food intake were monitored continuously over the course of the study and indirect calorimetry was used to determine energy expenditure during both feeding periods. Results Based on Western blot analysis, thermal imaging and noradrenaline test, we confirmed the lack of functional UCP1 in knockout mice. However, body weight gain, food intake and energy expenditure were not affected by deletion of UCP1 gene function during both feeding periods. Conclusion Conclusively, we show that UCP1 does not protect against diet-induced obesity at thermoneutrality. Further we introduce a novel UCP1-KO mouse enabling the generation of conditional UCP1-knockout mice to scrutinize the contribution of UCP1 to energy metabolism in different cell types or life stages.


2020 ◽  
Vol 21 (22) ◽  
pp. 8606
Author(s):  
Shogo Moriwaki ◽  
Yuki Narimatsu ◽  
Keisuke Fukumura ◽  
Eiko Iwakoshi-Ukena ◽  
Megumi Furumitsu ◽  
...  

RFamide-related peptide-3 (RFRP-3), the mammalian ortholog of avian gonadotropin-inhibitory hormone (GnIH), plays a crucial role in reproduction. In the present study, we explored the other functions of RFRP-3 by investigating the effects of chronic intracerebroventricular infusion of RFRP-3 (6 nmol/day) for 13 days on energy homeostasis in lean male C57BL/6J mice. The infusion of RFRP-3 increased cumulative food intake and body mass. In addition, the masses of brown adipose tissue (BAT) and the liver were increased by the administration of RFRP-3, although the mass of white adipose tissue was unchanged. On the other hand, RFRP-3 decreased O2 consumption, CO2 production, energy expenditure, and core body temperature during a short time period in the dark phase. These results suggest that the increase in food intake and the decrease in energy expenditure contributed to the gain of body mass, including the masses of BAT and the liver. The present study shows that RFRP-3 regulates not only reproductive function, but also energy metabolism, in mice.


1998 ◽  
Vol 274 (6) ◽  
pp. R1769-R1776 ◽  
Author(s):  
Line Mantha ◽  
Yves Deshaies

This study aimed to identify the metabolic steps involved in the acute hypotriglyceridemia brought about by increased energy expenditure (cold exposure) and to assess the causative involvement of some determinants of triglyceride (TG) metabolism as well as that of the β-adrenergic pathway. Rats were kept at 24°C or exposed to 10°C for 3 h after acute administration of the β-adrenergic antagonist propranolol (Prop) or vehicle. Cold exposure increased the rate of TG secretion (Triton WR1339 method) into the circulation by 50% ( P < 0.0005), an effect that was blunted by Prop. The cold-induced increase in TG secretion was closely related to changes in circulating nonesterified fatty acid levels, but not with serum insulin concentrations. Despite an increase in TG secretion, serum TG levels after acute cold exposure fell to 50% ( P < 0.002) of those measured at 24°C, indicating that the lowering of serum TG was entirely due to an increase in their rate of intravascular hydrolysis. This was confirmed by observing a 70% increase ( P < 0.002) in the rate of clearance of an exogenous TG emulsion in cold-exposed rats compared with those kept in the warm. Prop treatment before cold exposure decreased (∼30%, P < 0.005) the cold-induced stimulation of TG hydrolysis. The increased TG clearance rate in cold-exposed animals occurred in the absence of any change in the intravascular availability of lipoprotein lipase (LPL). In contrast, the activity of LPL displayed a tissue-specific response to cold exposure, being reduced by one-half in white adipose tissue ( P < 0.0005) and increased in brown adipose tissue (130%, P < 0.0001) and the heart (50%, P < 0.001). These findings show that, in the postprandial state, an acute increase in energy expenditure induced by cold exposure results in a lowering of serum TG entirely due to an increase in their rate of intravascular hydrolysis and that serum TGs are lowered despite an increase in the rate of TG secretion into the circulation. More efficient TG hydrolysis occurs independently of the intravascular availability of LPL. The study further shows that the effects of cold exposure on serum TG concentration and their rates of secretion and clearance are in large part mediated by the β-adrenergic pathway.


Author(s):  
Eric A. Wilson ◽  
Hui Sun ◽  
Zhenzhong Cui ◽  
Marshal T. Jahnke ◽  
Mritunjay Pandey ◽  
...  

The G protein subunits Gqα and G11α (Gq/11α) couple receptors to phospholipase C, leading to increased intracellular calcium. In this study we investigated the consequences of Gq/11α deficiency in the dorsomedial hypothalamus (DMH), a critical site for the control of energy homeostasis. Mice with DMH-specific deletion of Gq/11α (DMHGq/11KO) were generated by stereotaxic injection of AAV-Cre-GFP into the DMH of Gqαflox/flox:G11α-/- mice. Compared to control mice that received DMH injection of AAV-GFP, DMHGq/11KO mice developed obesity associated with reduced energy expenditure without significant changes in food intake or physical activity. DMHGq/11KO mice showed no defects in the ability of the melanocortin agonist melanotan II to acutely stimulate energy expenditure or to inhibit food intake. At room temperature (22oC) DMHGq/11KO mice showed reduced sympathetic nervous system activity in brown adipose tissue (BAT) and heart, accompanied with decreased basal BAT Ucp1 gene expression and lower heart rates. These mice were cold intolerant when acutely exposed to cold (6oC for 5 hours) and had decreased cold-stimulated BAT Ucp1 gene expression. DMHGq/11KO mice also failed to adapt to gradually declining ambient temperatures and to develop adipocyte browning in inguinal white adipose tissue although their BAT Ucp1 was proportionally stimulated. Consistent with impaired cold-induced thermogenesis, the onset of obesity in DMHGq/11KO mice was significantly delayed when housed under thermoneutral conditions (30ºC). Thus, our results show that Gqα and G11α in the DMH are required for the control of energy homeostasis by stimulating energy expenditure and thermoregulation.


Sign in / Sign up

Export Citation Format

Share Document