Angularis oculi vein blood flow modulates the magnitude but not the control of selective brain cooling in sheep

2011 ◽  
Vol 300 (6) ◽  
pp. R1409-R1417 ◽  
Author(s):  
Andrea Fuller ◽  
Robyn S. Hetem ◽  
Leith C. R. Meyer ◽  
Shane K. Maloney

To investigate the role of the angularis oculi vein (AOV) in selective brain cooling (SBC), we measured brain and carotid blood temperatures in six adult female Dorper sheep. Halfway through the study, a section of the AOV, just caudal to its junction with the dorsal nasal vein, was extirpated on both sides. Before and after AOV surgery, the sheep were housed outdoors at 21–22°C and were exposed in a climatic chamber to daytime heat (40°C) and water deprivation for 5 days. In sheep outdoors, SBC was significantly lower after the AOV had been cut, with its 24-h mean reduced from 0.25 to 0.01°C ( t5 = 3.06, P = 0.03). Carotid blood temperature also was lower (by 0.28°C) at all times of day ( t5 = 3.68, P = 0.01), but the pattern of brain temperature was unchanged. The mean threshold temperature for SBC was not different before (38.85 ± 0.28°C) and after (38.85 ± 0.39°C) AOV surgery ( t5 =0.00, P = 1.00), but above the threshold, SBC magnitude was about twofold less after surgery. SBC after AOV surgery also was less during heat exposure and water deprivation. However, SBC increased progressively by the same magnitude (0.4°C) over the period of water deprivation, and return of drinking water led to rapid cessation of SBC in sheep before and after AOV surgery. We conclude that the AOV is not the only conduit for venous drainage contributing to SBC in sheep and that, contrary to widely held opinion, control of SBC does not involve changes in the vasomotor state of the AOV.

2007 ◽  
Vol 293 (1) ◽  
pp. R438-R446 ◽  
Author(s):  
Andrea Fuller ◽  
Leith C. R. Meyer ◽  
Duncan Mitchell ◽  
Shane K. Maloney

By cooling the hypothalamus during hyperthermia, selective brain cooling reduces the drive on evaporative heat loss effectors, in so doing saving body water. To investigate whether selective brain cooling was increased in dehydrated sheep, we measured brain and carotid arterial blood temperatures at 5-min intervals in nine female Dorper sheep (41 ± 3 kg, means ± SD). The animals, housed in a climatic chamber at 23°C, were exposed for nine days to a cyclic protocol with daytime heat (40°C for 6 h). Drinking water was removed on the 3rd day and returned 5 days later. After 4 days of water deprivation, sheep had lost 16 ± 4% of body mass, and plasma osmolality had increased from 290 ± 8 to 323 ± 9 mmol/kg ( P < 0.0001). Although carotid blood temperature increased during heat exposure to similar levels during euhydration and dehydration, selective brain cooling was significantly greater in dehydration (0.38 ± 0.18°C) than in euhydration (−0.05 ± 0.14°C, P = 0.0008). The threshold temperature for selective brain cooling was not significantly different during euhydration (39.27°C) and dehydration (39.14°C, P = 0.62). However, the mean slope of lines of regression of brain temperature on carotid blood temperature above the threshold was significantly lower in dehydrated animals (0.40 ± 0.31) than in euhydrated animals (0.87 ± 0.11, P = 0.003). Return of drinking water at 39°C led to rapid cessation of selective brain cooling, and brain temperature exceeded carotid blood temperature throughout heat exposure on the following day. We conclude that for any given carotid blood temperature, dehydrated sheep exposed to heat exhibit selective brain cooling up to threefold greater than that when euhydrated.


2001 ◽  
Vol 281 (1) ◽  
pp. R108-R114 ◽  
Author(s):  
Shane K. Maloney ◽  
Andrea Fuller ◽  
Graham Mitchell ◽  
Duncan Mitchell

Selective brain cooling (SBC) is defined as a brain temperature cooler than the temperature of arterial blood from the trunk. Surrogate measures of arterial blood temperature have been used in many published studies on SBC. The use of a surrogate for arterial blood temperature has the potential to confound proper identification of SBC. We have measured brain, carotid blood, and rectal temperatures in conscious sheep exposed to 40, 22, and 5°C. Rectal temperature was consistently higher than arterial blood temperature. Brain temperature was consistently cooler than rectal temperature during all exposures. Brain temperature only fell below carotid blood temperature during the final few hours of 40°C exposure and not at all during the 5°C exposure. Consequently, using rectal temperature as a surrogate for arterial blood temperature does not provide a reliable indication of the status of the SBC effector. We also show that rapid suppression of SBC can result if the animals are disturbed.


1994 ◽  
Vol 267 (6) ◽  
pp. R1528-R1536 ◽  
Author(s):  
C. Jessen ◽  
H. P. Laburn ◽  
M. H. Knight ◽  
G. Kuhnen ◽  
K. Goelst ◽  
...  

Using miniature data loggers, we measured the temperatures of carotid blood and brain in four wildebeest (Connochaetes gnou) every 2 min for 3 wk and every 5 min, in two of the animals, for a further 6 wk. The animals ranged freely in their natural habitat, in which there was no shelter. They were subject to intense radiant heat (maximum approximately 1,000 W/m2) during the day. Arterial blood temperature showed a circadian rhythm with low amplitude (< 1 degree C) and peaked in early evening. Brain temperature was usually within 0.2 degrees C of arterial blood temperature. Above a threshold between 38.8 and 39.2 degrees C, brain temperature tended to plateau so that the animals exhibited selective brain cooling. However, selective brain cooling sometimes was absent even when blood temperature was high and present when it was low. During helicopter chases, selective brain cooling was absent, even though brain temperature was near 42 degrees C. We believe that selective brain cooling is controlled by brain temperature but is modulated by sympathetic nervous system status. In particular, selective brain cooling may be abolished by high sympathetic activity even at high brain temperatures.


1995 ◽  
Vol 79 (6) ◽  
pp. 1849-1854 ◽  
Author(s):  
F. F. McConaghy ◽  
J. R. Hales ◽  
R. J. Rose ◽  
D. R. Hodgson

Five horses were exercised on a treadmill [to central blood temperature (Tcore) approximately 42.5 degrees C]. Three of those horses were heated at rest in a climate room (53 degrees C, 90% relative humidity) (to Tcore approximately 41.5 degrees C). Temperatures were measured in the rectum, hypothalamus (Thyp), cerebrum, and cavernous sinus (Tsinus), on the skin of the head and midside, and Tcore. When Tcore increased above 38.5 degrees C, Thyp remained 0.6 +/- 0.1 degree C (SE) lower during heat exposure and 1 +/- 0.2 degrees C lower during exercise. During heat exposure, Tsinus was 2.2 +/- 0.4 degrees C below Tcore, and during exercise, Tsinus was 5 +/- 0.9 degrees C below Tcore. Upper respiratory tract bypass during exercise in one horse resulted in substantial reductions in Tcore-Thyp to 0.4 +/- 0.3 degrees C and Tcore-Tsinus to 0.9 +/- 0.2 degrees C. Thus the horse, a species without a carotid rete, can selectively cool the brain during exercise or heat exposure; this occurs, at least in part, via cool blood within the cavernous sinus, presumably resulting principally from cooling of venous blood within the upper respiratory tract.


1997 ◽  
Vol 273 (3) ◽  
pp. R1108-R1116 ◽  
Author(s):  
S. K. Maloney ◽  
G. Mitchell

We have measured blood flows in the angularis oculi (AOV), facial, and jugular veins and temperatures in the carotid artery and near the hypothalamus in three lightly anesthetized sheep while body and nasal mucosal (Tnm) temperatures were varied independently. Above a threshold hypothalamic temperature (Thyp) of 39 degrees C both selective brain cooling (SBC) and AOV blood flow increased. For a given Thyp, the increase in AOV flow and SBC was inversely proportional to Tnm: low Tnm resulted in high AOV flow and SBC, whereas increasing Tnm attenuated both AOV flow and SBC. This decrease in AOV flow results in submaximal SBC, which does not concur with the hypothesis that SBC functions to protect a thermally vulnerable brain. The trigger for these changes in AOV blood flow was Tnm. Occlusion of the AOV during SBC showed that AOV flow accounted for over 80% of SBC. We conclude that SBC is not only a mechanism for reducing brain temperature but may also be a means of adjusting Thyp to facilitate the appropriate thermoregulatory responses.


2006 ◽  
Vol 2 (3) ◽  
pp. 475-477 ◽  
Author(s):  
Graham Mitchell ◽  
Andrea Fuller ◽  
Shane K Maloney ◽  
Nicola Rump ◽  
Duncan Mitchell

Selective brain cooling (SBC) is defined as the lowering of brain temperature below arterial blood temperature. Artiodactyls employ a carotid rete, an anatomical heat exchanger, to cool arterial blood shortly before it enters the brain. The survival advantage of this anatomy traditionally is believed to be a protection of brain tissue from heat injury, especially during exercise. Perissodactyls such as horses do not possess a carotid rete, and it has been proposed that their guttural pouches serve the heat-exchange function of the carotid rete by cooling the blood that traverses them, thus protecting the brain from heat injury. We have tested this proposal by measuring brain and carotid artery temperature simultaneously in free-living horses. We found that despite evidence of cranial cooling, brain temperature increased by about 2.5 °C during exercise, and consistently exceeded carotid temperature by 0.2–0.5 °C. We conclude that cerebral blood flow removes heat from the brain by convection, but since SBC does not occur in horses, the guttural pouches are not surrogate carotid retes.


2007 ◽  
Vol 103 (5) ◽  
pp. 1837-1847 ◽  
Author(s):  
Matthew A. Neimark ◽  
Angelos-Aristeidis Konstas ◽  
Andrew F. Laine ◽  
John Pile-Spellman

A three-dimensional mathematical model was developed to examine the induction of selective brain cooling (SBC) in the human brain by intracarotid cold (2.8°C) saline infusion (ICSI) at 30 ml/min. The Pennes bioheat equation was used to propagate brain temperature. The effect of cooled jugular venous return was investigated, along with the effect of the circle of Willis (CoW) on the intracerebral temperature distribution. The complete CoW, missing A1 variant (mA1), and fetal P1 variant (fP1) were simulated. ICSI induced moderate hypothermia (defined as 32–34°C) in the internal carotid artery (ICA) territory within 5 min. Incorporation of the complete CoW resulted in a similar level of hypothermia in the ICA territory. In addition, the anterior communicating artery and ipsilateral posterior communicating artery distributed cool blood to the contralateral anterior and ipsilateral posterior territories, respectively, imparting mild hypothermia (35 and 35.5°C respectively). The mA1 and fP1 variants allowed for sufficient cooling of the middle cerebral territory (30–32°C). The simulations suggest that ICSI is feasible and may be the fastest method of inducing hypothermia. Moreover, the effect of convective heat transfer via the complete CoW and its variants underlies the important role of CoW anatomy in intracerebral temperature distributions during SBC.


2014 ◽  
Vol 34 (5) ◽  
pp. 743-752 ◽  
Author(s):  
Elga Esposito ◽  
Matthias Ebner ◽  
Ulf Ziemann ◽  
Sven Poli

Hypothermia is a promising therapeutic option for stroke patients and an established neuroprotective treatment for global cerebral ischemia after cardiac arrest. While whole body cooling is a feasible approach in intubated and sedated patients, its application in awake stroke patients is limited by severe side effects: Strong shivering rewarms the body and potentially worsens ischemic conditions because of increased O2 consumption. Drugs used for shivering control frequently cause sedation that increases the risk of aspiration and pneumonia. Selective brain cooling by intraarterial cold infusions (IACIs) has been proposed as an alternative strategy for patients suffering from acute ischemic stroke. Preclinical studies and early clinical experience indicate that IACI induce a highly selective brain temperature decrease within minutes and reach targeted hypothermia 10 to 30 times faster than conventional cooling methods. At the same time, body core temperature remains largely unaffected, thus systemic side effects are potentially diminished. This review critically discusses the limitations and side effects of current cooling techniques for neuroprotection from ischemic brain damage and summarizes the available evidence regarding advantages and potential risks of IACI.


1991 ◽  
Vol 261 (5) ◽  
pp. R1171-R1175 ◽  
Author(s):  
C. C. Barney ◽  
J. S. Williams ◽  
D. H. Kuiper

Dehydration can be brought about by either water deprivation or by heat exposure (thermal dehydration). Angiotensin II has been shown to have a role in water deprivation-induced thirst. The current study was designed to determine whether angiotensin II is involved in thirst caused by thermal dehydration. Male Sprague-Dawley strain rats were dehydrated by exposure to a 40 degree C environment for 2-4 h or by water deprivation for 44 h. Water deprivation but not heat exposure significantly increased plasma renin activity. Neither ureteric ligation nor nephrectomy significantly altered water intake after thermal dehydration. Captopril, an inhibitor of angiotensin converting enzyme, given at a dose of 100 mg/kg ip, significantly decreased water intake in water-deprived rats but not in thermally dehydrated rats. Angiotensin II therefore does not appear to play a role in the control of water intake of thermally dehydrated rats. The physiological responses to dehydration in rats are dependent on the way in which the dehydration is brought about.


Sign in / Sign up

Export Citation Format

Share Document