Circadian phase-shifting effects of nocturnal exercise in older compared with young adults

2003 ◽  
Vol 284 (6) ◽  
pp. R1542-R1550 ◽  
Author(s):  
Erin K. Baehr ◽  
Charmane I. Eastman ◽  
William Revelle ◽  
Susan H. Losee Olson ◽  
Lisa F. Wolfe ◽  
...  

Exercise can phase shift the circadian rhythms of young adults if performed at the right time of day. Similar research has not been done in older adults. This study examined the circadian phase-delaying effects of a single 3-h bout of low-intensity nocturnal exercise in older ( n = 8; 55–73 yr old) vs. young ( n = 8; 20–32 yr old) adults. The exercise occurred at the beginning of each subject's habitual sleep time, and subjects sat in a chair in dim light during the corresponding time in the control condition. The dim-light melatonin onset (DLMO) was used as the circadian phase marker. The DLMO phase delayed more after the exercise than after the control condition. On average, the difference in phase shift between the exercise and control conditions was similar for older and young subjects, demonstrating that the phase-shifting effects of exercise on the circadian system are preserved in older adults. Therefore, exercise may potentially be a useful treatment to help adjust circadian rhythms in older and young adults.

10.2196/12452 ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. e12452 ◽  
Author(s):  
Timothée Aubourg ◽  
Jacques Demongeot ◽  
Hervé Provost ◽  
Nicolas Vuillerme

Background Recent studies have thoughtfully and convincingly demonstrated the possibility of estimating the circadian rhythms of young adults’ social activity by analyzing their telephone call-detail records (CDRs). In the field of health monitoring, this development may offer new opportunities for supervising a patient’s health status by collecting objective, unobtrusive data about their daily social interactions. However, before considering this future perspective, whether and how similar results could be observed in other populations, including older ones, should be established. Objective This study was designed specifically to address the circadian rhythms in the telephone calls of older adults. Methods A longitudinal, 12-month dataset combining CDRs and questionnaire data from 26 volunteers aged 65 years or older was used to examine individual differences in the daily rhythms of telephone call activity. The study used outgoing CDRs only and worked with three specific telecommunication parameters: (1) call recipient (alter), (2) time of day, and (3) call duration. As did the studies involving young adults, we analyzed three issues: (1) the existence of circadian rhythms in the telephone call activity of older adults, (2) their persistence over time, and (3) the alter-specificity of calls by calculating relative entropy. Results We discovered that older adults had their own specific circadian rhythms of outgoing telephone call activity whose salient features and preferences varied across individuals, from morning until night. We demonstrated that rhythms were consistent, as reflected by their persistence over time. Finally, results suggested that the circadian rhythms of outgoing telephone call activity were partly structured by how older adults allocated their communication time across their social network. Conclusions Overall, these results are the first to have demonstrated the existence, persistence, and alter-specificity of the circadian rhythms of the outgoing telephone call activity of older adults. These findings suggest an opportunity to consider modern telephone technologies as potential sensors of daily activity. From a health care perspective, these sensors could be harnessed for unobtrusive monitoring purposes.


2000 ◽  
Vol 278 (2) ◽  
pp. R373-R382 ◽  
Author(s):  
Orfeu M. Buxton ◽  
Mireille L'Hermite-Balériaux ◽  
Fred W. Turek ◽  
Eve van Cauter

To systematically determine the effects of daytime exposure to sleep in darkness on human circadian phase, four groups of subjects participated in 4-day studies involving either no nap (control), a morning nap (0900–1500), an afternoon nap (1400–2000), or an evening nap (1900–0100) in darkness. Except during the scheduled sleep/dark periods, subjects remained awake under constant conditions, i.e., constant dim light exposure (36 lx), recumbence, and caloric intake. Blood samples were collected at 20-min intervals for 64 h to determine the onsets of nocturnal melatonin and thyrotropin secretion as markers of circadian phase before and after stimulus exposure. Sleep was polygraphically recorded. Exposure to sleep and darkness in the morning resulted in phase delays, whereas exposure in the evening resulted in phase advances relative to controls. Afternoon naps did not change circadian phase. These findings indicate that human circadian phase is dependent on the timing of darkness and/or sleep exposure and that strategies to treat circadian misalignment should consider not only the timing and intensity of light, but also the timing of darkness and/or sleep.


2002 ◽  
Vol 282 (2) ◽  
pp. R454-R463 ◽  
Author(s):  
Katherine M. Sharkey ◽  
Charmane I. Eastman

There has been scant evidence for a phase-shifting effect of melatonin in shift-work or jet-lag protocols. This study tested whether melatonin can facilitate phase shifts in a simulated night-work protocol. Subjects ( n = 32) slept in the afternoons/evenings before night work (a 7-h advance of the sleep schedule). They took melatonin (0.5 mg or 3.0 mg) or placebo before the first four of eight afternoon/evening sleep episodes at a time when melatonin has been shown to phase advance the circadian clock. Melatonin produced larger phase advances than placebo in the circadian rhythms of melatonin and temperature. Average phase advances (±SD) of the dim light melatonin onset were 1.7 ± 1.2 h (placebo), 3.0 ± 1.1 h (0.5 mg), and 3.9 ± 0.5 h (3.0 mg). A measure of circadian adaptation, shifting the temperature minimum enough to occur within afternoon/evening sleep, showed that only subjects given melatonin achieved this goal (73% with 3.0 mg, 56% with 0.5 mg, and 0% with placebo). Melatonin could be used to promote adaptation to night work and jet travel.


Author(s):  
Shweta Kanchan ◽  
Sunita Tiwari ◽  
Shweta Singh

The present study is to study the effect of cognitive behaviour therapy on various sleep parameters and circadian phase rhythmic in young college going adults. Fifty young college going adults were chosen from the MBBS and BDS students of King George's Medical University Lucknow, their polysomnography was conducted along with it salivary melatonin estimation was conducted to find the time of Dim light melatonin onset (DLMO), the subjects were administered cognitive behaviour therapy (CBT),after completing the sessions of cognitive behaviour therapy another Polysomnographic study and DLMO estimation was conducted, various sleep parameters were compared before and after the CBT. The study showed an improvement in the steep quality, a decrease in daytime sleepiness along with this total sleep time significantly increased, sleep efficiency also improved and there was a decrease in the REM sleep latency. The Dim light melatonin onset advanced for the subjects and the chronotype showed an inclination towards an earlier timings.


2019 ◽  
Vol 27 (4) ◽  
pp. 466-472 ◽  
Author(s):  
Dalia Mickeviciene ◽  
Renata Rutkauskaite ◽  
Dovile Valanciene ◽  
Diana Karanauskiene ◽  
Marius Brazaitis ◽  
...  

The aim of the study was to establish whether there were differences in speed–accuracy movement learning strategies between children, young adults, and older adults. A total of 30 boys, 30 young adult men, and 30 older men were seated in a special chair at a table with a Dynamic Parameter Analyzer 1. Participants had to perform a speed–accuracy task with the right-dominant hand. It may be assumed that the motor variables of children are more prone to change during the fast learning process than those of young adults and older adults and that the development of internal models is more changeable in children than in young adults and the older adults during the fast adaptation-based learning process.


2020 ◽  
Vol 16 (S5) ◽  
Author(s):  
Zoe M. Schrire ◽  
Sharon L. Naismith ◽  
Jonathon Pye ◽  
Shantel L. Duffy ◽  
Christopher J. Gordon ◽  
...  

SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A63-A64
Author(s):  
Lauren Hartstein ◽  
Lameese Akacem ◽  
Cecilia Diniz Behn ◽  
Shelby Stowe ◽  
Kenneth Wright ◽  
...  

Abstract Introduction In adults, exposure to light at night delays the timing of the circadian clock in a dose-dependent manner with intensity. Although children’s melatonin levels are highly suppressed by evening bright light, the sensitivity of young children’s circadian timing to evening light is unknown. This research aimed to establish an illuminance response curve for phase delay in preschool children as a result of exposure to varying light intensities in the hour before bedtime. Methods Healthy children (n=36, 3.0 – 4.9 years, 39% males), participated in a 10-day protocol. For 7 days, children followed a strict parent-selected sleep schedule. On Days 8-10, an in-home dim-light assessment was performed. On Day 8, dim light melatonin onset (DLMO) was measured through saliva samples collected in 20-30-min intervals throughout the evening until 1-h past habitual bedtime. On Day 9, children were exposed to a white light stimulus (semi-randomly assigned from 5lx to 5000lx) for 1-h before their habitual bedtime, and saliva was collected before, during, and after the exposure. On Day 10, children provided saliva samples in the evening for 2.5-h past bedtime for a final DLMO assessment. Phase angle of entrainment (habitual bedtime – DLMObaseline) and circadian phase delay (DLMOfinal – DLMObaseline) were computed. Results Final DLMO (Day 10) shifted between -8 and 123 minutes (M = 56.1 +/- 33.6 min; negative value = phase advance, positive value = phase delay) compared with DLMO at baseline (Day 8). Raw phase shift did not demonstrate a dose-dependent relationship with light intensity. Rather, we observed a robust phase delay across all intensities. Conclusion These data suggest preschoolers’ circadian clocks are immensely sensitive to a large range of light intensities, which may be mechanistically influenced by less mature ophthalmologic features (e.g. clearer lenses, larger pupils). With young children’s ever-growing use of light-emitting devices and evening exposure to artificial lighting, as well as the prevalence of behavioral sleep problems, these findings may inform recommendations for parents on the effects of evening light exposure on sleep timing in early childhood. Support (if any) This research was supported with funds from the Eunice Kennedy Shriver National Institute of Child Health & Human Development (R01-HD087707).


2005 ◽  
Vol 289 (1) ◽  
pp. R209-R216 ◽  
Author(s):  
Namni Goel

Although light is considered the primary entrainer of circadian rhythms in humans, nonphotic stimuli, including exercise and melatonin also phase shift the biological clock. Furthermore, in birds and nonhuman mammals, auditory stimuli are effective zeitgebers. This study investigated whether a nonphotic auditory stimulus phase shifts human circadian rhythms. Ten subjects (5 men and 5 women, ages 18–72, mean age ± SD, 44.7 ± 21.4 yr) completed two 4-day laboratory sessions in constant dim light (<20 lux). They received two consecutive presentations of either a 2-h auditory or control stimulus from 0100 to 0300 on the second and third nights (presentation order of the stimulus and control was counterbalanced). Core body temperature (CBT) was collected and stored in 2-min bins throughout the study and salivary melatonin was obtained every 30 min from 1900 to 2330 on the baseline and poststimulus/postcontrol nights. Circadian phase of dim light melatonin onset (DLMO) and of CBT minimum, before and after auditory or control presentation was assessed. The auditory stimulus produced significantly larger phase delays of the circadian melatonin (mean ± SD, −0.89 ± 0.40 h vs. −0.27 ± 0.16 h) and CBT (−1.16 ± 0.69 h vs. −0.44 ± 0.27 h) rhythms than the control. Phase changes for the two circadian rhythms also positively correlated, indicating direct effects on the biological clock. In addition, the auditory stimulus significantly decreased fatigue compared with the control. This study is the first demonstration of an auditory stimulus phase-shifting circadian rhythms in humans, with shifts similar in size and direction to those of other nonphotic stimuli presented during the early subjective night. This novel stimulus may be a useful countermeasure to facilitate circadian adaptation after transmeridian travel or shift work.


2017 ◽  
Vol 29 (3) ◽  
pp. 560-572 ◽  
Author(s):  
John A. E. Anderson ◽  
Saman Sarraf ◽  
Tarek Amer ◽  
Buddhika Bellana ◽  
Vincent Man ◽  
...  

Testing older adults in the morning generally improves behavioral performance relative to afternoon testing. Morning testing is also associated with brain activity similar to that of young adults. Here, we used graph theory to explore how time of day (TOD) affects the organization of brain networks in older adults across rest and task states. We used nodes from the automated anatomical labeling atlas to construct participant-specific correlation matrices of fMRI data obtained during 1-back tasks with interference and rest. We computed pairwise group differences for key graph metrics, including small-worldness and modularity. We found that older adults tested in the morning and young adults did not differ on any graph metric. Both of these groups differed from older adults tested in the afternoon during the tasks—but not rest. Specifically, the latter group had lower modularity and small-worldness (indices of more efficient network organization). Across all groups, higher modularity and small-worldness strongly correlated with reduced distractibility on an implicit priming task. Increasingly, TOD is seen as important for interpreting and reproducing neuroimaging results. Our study emphasizes how TOD affects brain network organization and executive control in older adults.


2021 ◽  
Vol 13 ◽  
Author(s):  
Veerle de Rond ◽  
Diego Orcioli-Silva ◽  
Bauke Wybren Dijkstra ◽  
Jean-Jacques Orban de Xivry ◽  
Annette Pantall ◽  
...  

Background: Postural control and cognition are affected by aging. We investigated whether cognitive distraction influenced neural activity differently in young and older adults during a game-like mediolateral weight-shifting task with a personalized task load.Methods: Seventeen healthy young and 17 older adults performed a balance game, involving hitting virtual wasps, serial subtractions and a combination of both (dual-task). A motion analysis system estimated each subject's center of mass position. Cortical activity in five regions was assessed by measuring oxygenated hemoglobin (HbO2) with a functional Near-Infrared Spectroscopy system.Results: When adding cognitive load to the game, weight-shifting speed decreased irrespective of age, but older adults reduced the wasp-hits more than young adults. Accompanying these changes, older adults decreased HbO2 in the left pre-frontal cortex (PFC) and frontal eye fields (FEF) compared to single-tasking, a finding not seen in young adults. Additionally, lower HbO2 levels were found during dual-tasking compared to the summed activation of the two single tasks in all regions except for the right PFC. These relative reductions were specific for the older age group in the left premotor cortex (PMC), the right supplementary motor area (SMA), and the left FEF.Conclusion: Older adults showed more compromised neural activity than young adults when adding a distraction to a challenging balance game. We interpret these changes as competitive downgrading of neural activity underpinning the age-related deterioration of game performance during dual-tasking. Future work needs to ascertain if older adults can train their neural flexibility to withstand balance challenges during daily life activities.


Sign in / Sign up

Export Citation Format

Share Document