scholarly journals Glutamine-dependent inhibition of pial arteriolar dilation to acetylcholine with and without hyperammonemia in the rat

2005 ◽  
Vol 288 (6) ◽  
pp. R1612-R1619 ◽  
Author(s):  
Tetsu Kawaguchi ◽  
Saul W. Brusilow ◽  
Richard J. Traystman ◽  
Raymond C. Koehler

Glutamine has been shown to influence endothelial-dependent relaxation and nitric oxide production in vitro, possibly by limiting arginine availability, but its effects in vivo have not been well studied. Hyperammonemia is a pathophysiological condition in which glutamine is elevated and contributes to depressed CO2 reactivity of cerebral arterioles. We tested the hypothesis that acute hyperammonemia decreases pial arteriolar dilation to acetylcholine in vivo and that this decrease could be prevented by inhibiting glutamine synthetase with l-methionine- S-sulfoximine (MSO) or by intravenous infusion of l-arginine. Pial arteriolar diameter responses to topical superfusion of acetylcholine were measured in anesthetized rats before and at 6 h of infusion of either sodium or ammonium acetate. Ammonium acetate infusion increased plasma ammonia concentration from ∼30 to ∼600 μM and increased cerebral glutamine concentration fourfold. Arteriolar dilation to acetylcholine was intact after infusion of sodium acetate in groups pretreated with vehicle or with MSO plus methionine, which was coadministered to prevent MSO-induced seizures. In contrast, dilation in response to acetylcholine was completely blocked in hyperammonemic groups pretreated with vehicle or methionine alone. However, MSO plus methionine administration before hyperammonemia, which maintained cerebral glutamine concentration at control values, preserved acetylcholine dilation. Intravenous infusion of l-arginine during the last 2 h of the ammonium acetate infusion partially restored dilation to acetylcholine without reducing cerebral glutamine accumulation. Superfusion of 1 or 2 mM l-glutamine through the cranial window for 1 h in the absence of hyperammonemia attenuated acetylcholine dilation but had no effect on endothelial-independent dilation to nitroprusside. We conclude that 1) hyperammonemia reduces acetylcholine-evoked dilation in cerebral arterioles, 2) this reduction depends on increased glutamine rather than ammonium ions, and 3) increasing arginine partially overcomes the inhibitory effect of glutamine.

2000 ◽  
Vol 278 (5) ◽  
pp. H1577-H1584 ◽  
Author(s):  
Toshiki Okada ◽  
Yukinaga Watanabe ◽  
Saul W. Brusilow ◽  
Richard J. Traystman ◽  
Raymond C. Koehler

Glutamine is purported to inhibit recycling of citrulline to arginine and to limit nitric oxide release in vitro. However, vasoactive effects of glutamine have not been clearly demonstrated in vivo. During hyperammonemia, impaired cerebrovascular reactivity to CO2 is related to glutamine accumulation. We tested the hypotheses that 1) glutamine infusion in the absence of hyperammonemia impairs cerebrovascular CO2 reactivity and 2) arginine infusion preserves CO2 reactivity during glutamine infusion and during hyperammonemia. Pentobarbital sodium-anesthetized rats were equipped with a closed cranial window for measuring pial arteriolar diameter. Intravenous infusion of 3 mmol ⋅ kg− 1 ⋅ h− 1of l-glutamine for 6 h produced threefold increases in plasma and cerebrospinal fluid concentrations. Dilation to hypercapnia was reduced by 45% compared with that of a time control group at 6 h but not at 3 h of glutamine infusion. Coinfusion of 2 mmol ⋅ kg− 1 ⋅ h− 1of l-arginine with glutamine maintained the hypercapnic vasodilation at the control value. Infusion of ammonium acetate at a rate known to produce threefold increases in cortical tissue glutamine concentration resulted in no significant hypercapnic vasodilation. Coinfusion of arginine with ammonium acetate maintained hypercapnic vasodilation at 60% of the control value. Arginine infusion did not augment hypercapnic vasodilation in a control group. We conclude that glutamine modulates cerebrovascular CO2 reactivity in vivo. Glutamine probably acts by limiting arginine availability because the vascular inhibitory effect required >3 h to develop and because arginine infusion counteracted the vascular effect of both endogenously and exogenously produced increases in glutamine.


Cephalalgia ◽  
2005 ◽  
Vol 25 (4) ◽  
pp. 249-260 ◽  
Author(s):  
A Gozalov ◽  
KA Petersen ◽  
C Mortensen ◽  
I Jansen-Olesen ◽  
D Klaerke ◽  
...  

The aim of the present study was to examine the effect of KATP channel openers pinacidil and levcromakalim on rat dural and pial arteries as well as their inhibition by glibenclamide. We used an in-vivo genuine closed cranial window model and an in-vitro organ bath. Glibenclamide alone reduced the dural but not the pial artery diameter compared with controls. Intravenous pinacidil and levcro-makalim induced dural and pial artery dilation that was significantly attenuated by glibenclamide. In the organ bath pinacidil and levcromakalim induced dural and middle cerebral artery relaxation that was significantly attenuated by glibenclamide. In conclusion, KATP channel openers induce increasing diameter/relaxation of dural and pial arteries after intravenous infusion in vivo and on isolated arteries in vitro. Furthermore, dural arteries were more sensitive to KATP channel openers than pial arteries.


1978 ◽  
Vol 56 (5) ◽  
pp. 305-314 ◽  
Author(s):  
Patrick Vinay ◽  
Guy Lemieux ◽  
André Gougoux

The time course of changes in the concentration of metabolites in response to a nontoxic load of ammonia was measured in freeze-clamped kidneys of fasted rats. Following a single NH4HCO3 load, a decrease in tissue concentration of 2-oxoglutarate occurs but this change is small and delayed in relation to the peak of blood ammonia concentration. An immediate but transient increment in tissue glutamine also occurs. No close relationship between the mitochondrial free NAD:NADH ratio calculated from the glutamate dehydrogenase and the 3-hydroxybutyrate dehydrogenase systems is seen during alteration of ammonia concentration. In contrast with previously reported observations in the liver under similar circumstances, no increase in tissue or renal venous blood aspartate or alanine concentration occurs. A constant infusion of NH4HCO3 doubles the tissue glutamine concentration and changes net renal extraction of glutamine to net production. The infusion of NH4+ together with a carbon source (malate, lactate) results in similar increase in tissue and renal vein glutamine concentration. No accumulation of aspartate or alanine are seen. In vitro studies on isolated kidney tubules indicate that the net flux through both aspartate aminotransferase and glutamate dehydrogenase is dependent on the concentration of the reactants as expected for systems in near-equilibrium situation. It is concluded that the rat kidney response to an ammonia load differs from that of the liver despite the apparent existence of a similar network of near-equilibrium systems. Such a difference is best explained by renal glutamine synthesis and sequestration of glutamate as glutamine in vivo.


2002 ◽  
Vol 282 (2) ◽  
pp. H688-H695 ◽  
Author(s):  
Sean P. Didion ◽  
Frank M. Faraci

Reactive oxygen species are important modulators of cerebral vascular tone. Recent evidence, mainly from the aorta, suggests that NAD(P)H oxidase is a major source of vascular superoxide. The goal of the present study was to examine the effects of NADH and NADPH that are commonly used to stimulate NAD(P)H oxidase activity, on superoxide levels and cerebral vascular tone. Basilar arteries and cerebral arterioles from normal rabbits were studied in vitro using isolated tissue baths and in vivo using a cranial window, respectively. In the basilar artery, NADH produced a biphasic response; low concentrations (0.1–10 μM NADH) produced marked relaxation, whereas higher concentrations (30–100 μM NADH) produced contraction. Responses to NADH were significantly ( P < 0.05) inhibited in the presence of 4,5-dihydroxy-1,3-benzene-disulfonic acid (Tiron; a scavenger of superoxide, 10 mM). In contrast, NADPH (10–100 μM) produced moderate contraction of the basilar artery, which was inhibited in the presence of Tiron. In vivo, NADH produced Tiron-sensitive dilatation of cerebral arterioles. NADH and NADPH dose dependently increased superoxide levels in the basilar artery, as detected by lucigenin (5 μM)-enhanced chemiluminescence, but increases in superoxide were significantly greater for NADPH than NADH. These increases in superoxide were markedly reduced in the presence of polyethylene glycol-superoxide dismutase (300 U/ml) or diphenylene iodonium [0.1 mM, an inhibitor of flavin-containing enzymes, including NAD(P)H oxidase] but were not affected by indomethacin, N G-nitro-l-arginine, or allopurinol. These data suggest that NADH- and NADPH-induced changes in cerebral vascular tone are mediated by superoxide, produced by a flavin-containing enzyme, most likely NAD(P)H oxidase, but not xanthine oxidase or nitric oxide synthase.


1973 ◽  
Vol 30 (02) ◽  
pp. 315-326
Author(s):  
J. Heinz Joist ◽  
Jean-Pierre Cazenave ◽  
J. Fraser Mustard

SummarySodium pentobarbital (SPB) and three other barbituric acid derivatives were found to inhibit platelet function in vitro. SPB had no effect on the primary response to ADP of platelets in platelet-rich plasma (PRP) or washed platelets but inhibited secondary aggregation induced by ADP in human PRP. The drug inhibited both phases of aggregation induced by epinephrine. SPB suppressed aggregation and the release reaction induced by collagen or low concentrations of thrombin, and platelet adherence to collagen-coated glass tubes. The inhibition by SPB of platelet aggregation was readily reversible and isotopically labeled SPB did not become firmly bound to platelets. No inhibitory effect on platelet aggregation induced by ADP, collagen, or thrombin could be detected in PRP obtained from rabbits after induction of SPB-anesthesia.


1976 ◽  
Vol 36 (02) ◽  
pp. 401-410 ◽  
Author(s):  
Buichi Fujttani ◽  
Toshimichi Tsuboi ◽  
Kazuko Takeno ◽  
Kouichi Yoshida ◽  
Masanao Shimizu

SummaryThe differences among human, rabbit and guinea-pig platelet adhesiveness as for inhibitions by adenosine, dipyridamole, chlorpromazine and acetylsalicylic acid are described, and the influence of measurement conditions on platelet adhesiveness is also reported. Platelet adhesiveness of human and animal species decreased with an increase of heparin concentrations and an increase of flow rate of blood passing through a glass bead column. Human and rabbit platelet adhesiveness was inhibited in vitro by adenosine, dipyridamole and chlorpromazine, but not by acetylsalicylic acid. On the other hand, guinea-pig platelet adhesiveness was inhibited by the four drugs including acetylsalicylic acid. In in vivo study, adenosine, dipyridamole and chlorpromazine inhibited platelet adhesiveness in rabbits and guinea-pigs. Acetylsalicylic acid showed the inhibitory effect in guinea-pigs, but not in rabbits.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ying Liu ◽  
Wenjie Liu ◽  
Ziqiang Yu ◽  
Yan Zhang ◽  
Yinghua Li ◽  
...  

AbstractBromodomain-containing protein 4 (BRD4) has emerged as a promising treatment target for bone-related disorders. (+)-JQ1, a thienotriazolodiazepine compound, has been shown to inhibit pro-osteoclastic activity in a BRD4-dependent approach and impede bone loss caused by ovariectomy (OVX) in vivo. However, clinical trials of (+)-JQ1 are limited because of its poor druggability. In this study, we synthesized a new (+)-JQ1 derivative differing in structure and chirality. One such derivative, (+)-ND, exhibited higher solubility and excellent inhibitory activity against BRD4 compared with its analogue (+)-JQ1. Interestingly, (-)-JQ1 and (-)-ND exhibited low anti-proliferative activity and had no significant inhibitory effect on RANKL-induced osteoclastogenesis as compared with (+)-JQ1 and (+)-ND, suggesting the importance of chirality in the biological activity of compounds. Among these compounds, (+)-ND displayed the most prominent inhibitory effect on RANKL-induced osteoclastogenesis. Moreover, (+)-ND could inhibit osteoclast-specific gene expression, F‐actin ring generation, and bone resorption in vitro and prevent bone loss in OVX mice. Collectively, these findings indicated that (+)-ND represses RANKL‐stimulated osteoclastogenesis and averts OVX-triggered osteoporosis by suppressing MAPK and NF-κB signalling cascades, suggesting that it may be a prospective candidate for osteoporosis treatment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hayato Mizuta ◽  
Koutaroh Okada ◽  
Mitsugu Araki ◽  
Jun Adachi ◽  
Ai Takemoto ◽  
...  

AbstractALK gene rearrangement was observed in 3%–5% of non-small cell lung cancer patients, and multiple ALK-tyrosine kinase inhibitors (TKIs) have been sequentially used. Multiple ALK-TKI resistance mutations have been identified from the patients, and several compound mutations, such as I1171N + F1174I or I1171N + L1198H are resistant to all the approved ALK-TKIs. In this study, we found that gilteritinib has an inhibitory effect on ALK-TKI–resistant single mutants and I1171N compound mutants in vitro and in vivo. Surprisingly, EML4-ALK I1171N + F1174I compound mutant-expressing tumors were not completely shrunk but regrew within a short period of time after alectinib or lorlatinib treatment. However, the relapsed tumor was markedly shrunk after switching to the gilteritinib in vivo model. In addition, gilteritinib was effective against NTRK-rearranged cancers including entrectinib-resistant NTRK1 G667C-mutant and ROS1 fusion-positive cancer.


Sign in / Sign up

Export Citation Format

Share Document