Nocturnal growth hormone secretory dynamics are altered after resistance exercise: deconvolution analysis of 12-hour immunofunctional and immunoreactive isoforms

2006 ◽  
Vol 291 (6) ◽  
pp. R1749-R1755 ◽  
Author(s):  
Alexander P. Tuckow ◽  
Kevin R. Rarick ◽  
William J. Kraemer ◽  
James O. Marx ◽  
Wesley C. Hymer ◽  
...  

To characterize the effects of daytime exercise on subsequent overnight growth hormone (GH) secretion and elimination dynamics, serum was sampled, and GH was measured every 10 min for 12 h (1800 to 0600) in a control (CON) condition and after a 50-set resistance exercise protocol (EX) from 1500 to 1700. GH was measured with a conventional immunoreactive (IR) and an immunofunctional (IF) assay, and values were analyzed via a multi-parameter deconvolution analysis. EX resulted in a higher overnight secretory burst frequency [CON: 7.6 (SD 2.4) < EX: 9.4 (2.2) bursts per 12 h, P = 0.005] but lower mean burst mass [CON: 9.2 (4.7) > EX: 6.0 (2.9) μg/l, P = 0.019] and secretory rate [CON: 0.68 (0.29) > EX: 0.48 (0.23) μg/l/min; P = 0.015; ANOVA main effect means presented]. Approximate entropy (ApEn) was greater after EX, indicating a less orderly GH release process than CON. The estimated half-life of IF GH was significantly lower than IR GH [IF: 15.3 (1.1) < IR 19.8 (1.6) min, P < 0.001] but similar between the CON and EX conditions (∼17 min). Despite the changes in secretory dynamics, 12-h mean and integrated GH concentrations were similar between conditions. The results suggest that although quantitatively similar total amounts of GH are secreted overnight in CON and EX conditions, resistance exercise alters the dynamics of secretion by attenuating burst mass and amplitude yet increasing burst frequency.

1997 ◽  
pp. 377-386 ◽  
Author(s):  
K Friend ◽  
A Iranmanesh ◽  
IS Login ◽  
JD Veldhuis

Growth hormone (GH) release from the anterior pituitary gland is predominantly regulated by the two antagonistic hypothalamic peptides, growth hormone-releasing hormone (GHRH) and somatostatin. Appraising endogenous GHRH action is thus made difficult by the confounding effects of (variable) hypothalamic somatostatin inhibitory tone. Accordingly, to evaluate endogenous GHRH actions, we used a clinical model of presumptively acute endogenous somatostatin withdrawal with concomitant GHRH release. To this end, we administered in randomized order placebo or the indirect cholinergic agonist, pyridostigmine, for 48 h to 13 healthy men of varying ages (29-77 years) and body mass indices (21-47 kg/m2). We sampled blood at 10-min intervals for 48 h during both placebo and pyridostigmine (60 mg orally every 6 h) administration, and used an ultrasensitive GH chemiluminescence assay (sensitivity 0.0002-0.005 microgram/l) to capture GH pulse profiles. Multiparameter deconvolution analysis was applied to quantitate the number, amplitude, mass, and duration of significant underlying GH secretory bursts, and simultaneously estimate the GH half-life and concurrent basal GH secretion. Approximate entropy was utilized as a novel regularity statistic to quantify the relative orderliness of the hormone release process. All measures of GH secretion/half-life and orderliness were statistically invariant across the two consecutive 24-h placebo sessions. In contrast, pyridostigmine treatment significantly increased the mean serum GH concentration from 0.23 +/- 0.054 microgram/l during placebo to 0.45 +/- 0.072 microgram/l during the first day of treatment (P < 0.01). There was also a significant rise in the calculated 24-h pulsatile GH production rate from 8.9 +/- 1.7 micrograms/l/day on placebo to 27 +/- 5.6 micrograms/l/day during active drug treatment (P < 0.01). Pyridostigmine significantly and selectively amplified GH secretory burst mass to 1.5 +/- 0.35 micrograms/l compared with 0.74 +/- 0.19 microgram/l on placebo (P < 0.01). This was attributable to stimulation of GH secretory burst amplitude (maximal rate of GH secretion attained within the release episode) with no prolongation of estimated burst duration. Basal GH secretion and approximate entropy were not altered by pyridostigmine. However, age was strongly related to more disorderly GH release during both days of pyridostigmine treatment (r = +0.79, P = 0.0013). During the second 24-h of continued pyridostigmine treatment, most GH secretory parameters decreased by 15-50%, but in several instances remained significantly elevated above placebo. Body mass index, but not age, was a significantly negative correlate of the pyridostigmine-stimulated increase in GH secretion (r = -0.65, P = 0.017). In summary, assuming that somatostatin is withdrawn and (rebound) GHRH release is stimulated via pyridostigmine administration, we infer that relatively unopposed GHRH action principally controls GH secretory burst mass and amplitude, rather than apparent GH secretory pulse duration, the basal GH secretion rate, or the serial regularity/orderliness of the GH release process in the human. Moreover, we infer that increasing age is accompanied by greater disorderliness of somatostatin-withdrawn GHRH, and hence rebound GH, release. The strongly negative correlation between pyridostigmine-stimulated GH secretion and body mass index (but not age) further indicates that increased relative adiposity may result in decreased effective (somatostatin-withdrawn) endogenous GHRH stimulus strength.


2009 ◽  
Vol 297 (2) ◽  
pp. R403-R411 ◽  
Author(s):  
E. de Graaf-Roelfsema ◽  
P. P. Veldhuis ◽  
H. A. Keizer ◽  
M. M. E. van Ginneken ◽  
K. G. van Dam ◽  
...  

The influence of intensified and reduced training on nocturnal growth hormone (GH) secretion and elimination dynamics was studied in young (1.5 yr) Standardbred geldings to detect potential markers indicative for early overtraining. Ten horses trained on a treadmill for 32 wk in age-, breed-, and gender-matched fixed pairs. Training was divided into four phases (4, 18, 6, and 4 wk, respectively): 1) habituation to high-speed treadmill trotting, 2) normal training, in which speed and duration of training sessions were gradually increased, 3) in this phase, the horses were divided into 2 groups: control (C) and intensified trained (IT) group. In IT, training intensity, duration, and frequency were further increased, whereas in control these remained unaltered, and 4) reduced training (RT). At the end of phases 2, 3, and 4, blood was sampled overnight every 5 min for 8 h for assessment of GH secretory dynamics using pulse detection, deconvolution analysis, and approximate entropy (ApEn). Intensified training induced overtraining (performance decreased by 19% compared with C), which was associated with an increase in concentration peaks number (3.6 vs. 2.0, respectively), a smaller peak secretion pattern with a prolonged half-life (15.2 vs. 7.3 min, respectively), and an increased ApEn (0.89 vs. 0.49, respectively). RT did not lead to full recovery for the overtrained horses. The increased irregularity of nocturnal GH pulsatility pattern is indicative of a loss of coordinated control of GH regulation. Longer phases of somatostatin withdrawal are hypothesized to be the underlying mechanism for the observed changes in GH pulsatility pattern.


2002 ◽  
pp. 310-318 ◽  
Author(s):  
M Maccario ◽  
JD Veldhuis ◽  
F Broglio ◽  
LD Vito ◽  
E Arvat ◽  
...  

OBJECTIVE: To extend the insights on the action of GH secretagogues (GHS) on pituitary function, we studied the impact of intermittent daily s.c. administration of a peptidyl GHS, hexarelin (HEX), on 24-h GH, PRL, ACTH and cortisol release in healthy volunteers. DESIGN: We investigated the impact of two or three times daily s.c. administration of a short-acting peptidyl GHS, the hexapeptide HEX (1.5 microg/kg) on 24-h GH, PRL, ACTH and cortisol secretion (sampling every 20 min) in six normal young men. To monitor possible down-regulation, the effect of 1 microg/kg i.v. HEX at the end of each 24-h sampling period was studied. METHODS: Multi-parameter deconvolution analysis was used to quantitate pulsatile GH, PRL, ACTH and cortisol secretion and estimate the corresponding hormone half-lives. Complementary to deconvolution analysis, approximate entropy was used as a scale- and model-independent statistic to quantify the serial orderliness or pattern regularity of hormone measurements. RESULTS: Mean and integrated (24-h) serum GH concentrations were increased from baseline values to the same extent by two and three HEX injections. Both HEX schedules equally increased GH secretory burst mass (but not burst frequency), mean daily GH production rate, GH half-life and irregularity of GH release patterns. No change occurred in the secretion of IGF-I, PRL, ACTH and cortisol. Intravenous HEX at the end of each spontaneous 24-h profile induced a significant rise in GH, PRL, ACTH and cortisol. Prior HEX administration blunted the GH response, abolished that of ACTH and cortisol and did not modify the PRL increase. CONCLUSIONS: The study showed that two or three daily s.c. injections of HEX augmented 24-h GH secretion equally, amplifying selectively GH secretory pulse mass without altering lactotroph and corticotroph secretion. IGF-I levels were not modified by these 1-day HEX treatment schedules.


1999 ◽  
Vol 84 (6) ◽  
pp. 2056-2063 ◽  
Author(s):  
René K. Støving ◽  
Johannes D. Veldhuis ◽  
Allan Flyvbjerg ◽  
Jørgen Vinten ◽  
Jørgen Hangaard ◽  
...  

Anorexia nervosa (AN) is associated with multiple endocrine alterations. In the majority of AN patients, basal and GHRH-stimulated serum GH levels are increased. The metabolic effects of GH are known to be related to its pulsatile secretory pattern. The present study was performed to examine GH pulsatility in AN using the techniques of deconvolution analysis and approximate entropy, which quantify secretory activity and serial irregularity of underlying hormone release not reflected in peak occurrence or amplitudes. To this end, 24-h GH profiles were obtained by continuous blood sampling aliquoted at 20-min intervals in 8 nonfasting patients with AN [body mass index (BMI), 14.2 ± 0.8 kg/m2; mean ± sem) and in 11 age-matched healthy women (BMI, 20.3 ± 0.5 kg/m2). The deconvolution-estimated half-life of GH was not altered in the AN patients. The pituitary GH secretory burst frequency, burst mass, and burst duration were each significantly increased in women with AN compared to those in normal weight women. A 4-fold increase in daily pulsatile GH secretion was accompanied by a 20-fold increase in basal (nonpulsatile) GH secretion. There were significant negative correlations between BMI and the basal as well as pulsatile GH secretion rates. Moreover, AN patients exhibited significantly greater GH approximate entropy scores than the controls, denoting marked irregularity of the GH release process. In contrast to previous reports in healthy fasting subjects, cortisol levels in AN patients were positively correlated to GH secretion rates. Leptin levels were significantly inversely correlated to the pulsatile, but not the basal, GH secretion rate. The present data demonstrate augmented basal as well as pulsatile GH secretion with disruption of the orderliness of the GH release process in AN. Accordingly, GH secretion in AN probably reflects altered neuroendocrine feedback regulation, e.g. associated with increased hypothalamic GHRH discharge superimposed on reduced hypothalamic somatostatinergic tone.


2000 ◽  
Vol 278 (5) ◽  
pp. E933-E940 ◽  
Author(s):  
Jean-Claude Painson ◽  
Johannes D. Veldhuis ◽  
Gloria S. Tannenbaum

The neonatal gonadal steroid milieu is known to be important in imprinting the striking sexual dimorphism of growth hormone (GH) secretion; however, the influence of the sex steroids on GH control in adult life and their mechanism/site of action are largely unknown. In the present study, we tested the hypothesis that testosterone (T) subserves the gender-specific regularity of the GH release process in adulthood. The approximate entropy statistic (ApEn) was used to quantify the degree of regularity of GH release patterns over time. Eighteen hours after a single subcutaneous injection of 1 mg T, both sham-operated and ovariectomized (OVX) female adult rats displayed plasma GH profiles that were strikingly similar to the regular male-like ultradian rhythm of GH secretion. The highest ApEn values, denoting greater disorderliness of GH secretion, were observed in the ovary-intact group, and T injection significantly ( P < 0.001) reduced this irregularity whether or not the ovaries were present. Serial intravenous injections of GH-releasing hormone (GHRH) caused a similar increase in plasma GH levels in sham-operated females independently of time of administration. In contrast, female rats administered T exhibited a male-like intermittent pattern of GH responsiveness to GHRH, the latter known to be due to the cyclic release of endogenous somatostatin. These results demonstrate that acute exposure to T during adult life can rapidly and profoundly “masculinize” GH pulse-generating circuits in the female rat. Our findings suggest that the enhanced orderliness characteristic of the GH release process in males, compared with females, is regulated by T. We postulate that this T-induced regularity is mediated at the level of the hypothalamus by inducing regularity in somatostatin secretion, which in turn governs overall GH periodicity.


1999 ◽  
Vol 276 (5) ◽  
pp. R1351-R1358 ◽  
Author(s):  
N. Shah ◽  
W. S. Evans ◽  
J. D. Veldhuis

The neuroendocrine mechanisms by which estradiol drives growth hormone (GH) secretion in the human are poorly defined. Here we investigate estrogen’s specific regulation of the 24-h pulsatile, nyctohemeral, and entropic modes of GH secretion in healthy postmenopausal women. Volunteers ( n = 9) received randomly ordered placebo versus estradiol-17β (1 mg micronized steroid twice daily orally) treatment for 7–10 days and underwent blood sampling at 10-min intervals for 24 h to capture GH release profiles quantitated in a high-sensitivity chemiluminescence assay. Pulsatile GH secretion was appraised via deconvolution analysis, nyctohemeral GH rhythms by cosinor analysis, and the orderliness of GH release patterns via the approximate entropy statistic. Mean (±SE) 24-h serum GH concentrations approximately doubled on estrogen treatment (viz., from 0.31 ± 0.03 to 0.51 ± 0.07 μg/l; P = 0.033). Concomitantly, serum insulin-like growth factor-I (IGF-I), luteinizing hormone, and follicle-stimulating hormone concentrations fell, whereas thyroid-stimulating hormone and prolactin levels rose ( P < 0.01). The specific neuroendocrine action of estradiol included 1) a twofold amplified mass of GH secreted per burst, with no significant changes in basal GH release, half-life, pulse frequency, or duration; 2) an augmented amplitude and mesor of the 24-h rhythm in GH release, with no alteration in acrophase; and 3) greater disorderliness of GH release (higher approximate entropy). These distinctive and dynamic reactions to estrogen are consistent with partial withdrawal of IGF-I’s negative feedback and/or accentuated central drive to GH secretion.


1989 ◽  
Vol 257 (6) ◽  
pp. E809-E814
Author(s):  
K. Albertsson-Wikland ◽  
S. Rosberg ◽  
E. Libre ◽  
L. O. Lundberg ◽  
T. Groth

The kinetics of growth-hormone (GH) distribution and elimination was estimated in five GH-deficient children who received 11 intravenous single injections of GH. The plasma disappearance data were analyzed in terms of a two-compartment model. The kinetic parameters obtained were then used in calculating the GH-secretory rate by a numerical deconvolution technique. A simple formula was derived for calculation of the cumulated secretion from the area under the concentration curve of 145 healthy children of various ages, heights, and stages of puberty. The estimated 24-h GH secretion increased with age, corresponding to a two- to fourfold increase during the adolescence period. The highest secretions were found in pubertal stages 3-4. In prepubertal children the heights correlated markedly with the secretion of GH (r = 0.83). Thus an indication of the range of the GH secretion in normal growing children is found, which is important to estimate substitution doses for treatment of GH-deficient children.


1997 ◽  
Vol 272 (6) ◽  
pp. E1108-E1116 ◽  
Author(s):  
N. Vahl ◽  
J. O. Jorgensen ◽  
C. Skjaerbaek ◽  
J. D. Veldhuis ◽  
H. Orskov ◽  
...  

We tested the hypothesis that body composition is the major predictor of growth hormone (GH) secretion in nonobese adults. We measured lean and fat tissue distribution (computerized tomography and dual-energy X-ray absorptiometry scan) and physical fitness [maximal oxygen consumption (Vo2max)] in 42 healthy nonobese adults (22 women and 20 men, age range 27-59 yr, mean +/- SE body mass index = 24 +/- 0.5 kg/m2). Deconvolution analysis was used to estimate specific features of 24-h GH secretion and clearance. Approximate entropy was used to quantify the regularity of GH release. Older subjects exhibited decreased estimates of GH secretion compared with younger subjects. Females had higher estimates of GH secretion, a longer GH half-life, and displayed more irregularity in GH release than males. Mean 24-h serum GH concentrations correlated inversely with intra-abdominal fat and waist-to-hip ratio and positively with Vo2max. Multiple linear regression analysis revealed intra-abdominal fat as the dominant determinant of estimates of GH secretion. Vo2max was more important than sex and age in predicting GH secretion. We conclude that abdominal fat is the major determinant of GH secretion in healthy nonobese adults. Although the underlying mechanisms remain elusive, our findings extend the clinical implications of visceral adiposity to include hyposomatotropism.


1999 ◽  
Vol 276 (1) ◽  
pp. R219-R225 ◽  
Author(s):  
Kathleen M. Hoeger ◽  
Lisa A. Kolp ◽  
Frank J. Strobl ◽  
Johannes D. Veldhuis

The preovulatory luteinizing hormone (LH) surge results from the integration of complex interactions among gonadal steroids and hypothalamic and pituitary hormones. To evaluate changes in LH secretory dynamics that occur during the rat LH surge, we have 1) obtained frequently sampled serum LH concentration time series, 2) used both waveform-dependent and waveform-independent convolution analyses, and 3) independently assessed proestrous LH half-life and basal non-gonadotropin-releasing hormone (GnRH)-dependent LH secretion during the LH surge. Waveform-independent pulse analysis revealed a 24-fold increase in the maximal pulsatile LH secretory rate attained during late proestrus compared with early proestrus. A 15-fold increase was quantified for the mean LH secretory rate. In complementary analyses, we applied a measured LH half-life of 17 ± 2.7 min and a median basal LH secretion rate of 0.0046 μg ⋅ l−1 ⋅ min−1 for convolution analysis, revealing a 16-fold increase in the mass of LH released/burst and more than sixfold rise in the amplitude of the secretory peaks. Evaluation of the approximate entropy of the LH surge profiles was performed, showing an increase in the orderliness of the LH release process during the surge. We conclude that both quantitative (mass/burst) and qualitative (approximate entropy) features of LH release are regulated during the proestrous LH surge.


1996 ◽  
Vol 270 (6) ◽  
pp. E975-E979 ◽  
Author(s):  
E. Calabresi ◽  
E. Ishikawa ◽  
L. Bartolini ◽  
G. Delitala ◽  
G. Fanciulli ◽  
...  

In attempting to elucidate the neuroendocrine mechanisms that regulate pulsatile growth hormone (GH) secretion, we measured serum GH concentrations by an ultrasensitive immunofluorometric method in blood collected every 10 min for 8 h in 11 young healthy male volunteers (age range 21-31 yr) before and during somatostatin (SS) administration (an iv bolus dose of 350 micrograms followed by a continuous infusion at the rate of 6 micrograms.kg-1.h-1, which increases the circulating SS levels to approximately 570 pg/ml). Pulsatile GH secretion was analyzed using the computer-assisted pulse detection program cluster method and deconvolution analysis. The area and frequency of GH peaks were significantly reduced during SS infusion compared with basal values, but detectable pulsatile episodes were still present. These data suggest that, in adult males, SS controls pulsatile GH secretion and can decrease the mass and frequency of GH secretory bursts.


Sign in / Sign up

Export Citation Format

Share Document