scholarly journals Impact of two or three daily subcutaneous injections of hexarelin, a synthetic growth hormone (GH) secretagogue, on 24-h GH, prolactin, adrenocorticotropin and cortisol secretion in humans

2002 ◽  
pp. 310-318 ◽  
Author(s):  
M Maccario ◽  
JD Veldhuis ◽  
F Broglio ◽  
LD Vito ◽  
E Arvat ◽  
...  

OBJECTIVE: To extend the insights on the action of GH secretagogues (GHS) on pituitary function, we studied the impact of intermittent daily s.c. administration of a peptidyl GHS, hexarelin (HEX), on 24-h GH, PRL, ACTH and cortisol release in healthy volunteers. DESIGN: We investigated the impact of two or three times daily s.c. administration of a short-acting peptidyl GHS, the hexapeptide HEX (1.5 microg/kg) on 24-h GH, PRL, ACTH and cortisol secretion (sampling every 20 min) in six normal young men. To monitor possible down-regulation, the effect of 1 microg/kg i.v. HEX at the end of each 24-h sampling period was studied. METHODS: Multi-parameter deconvolution analysis was used to quantitate pulsatile GH, PRL, ACTH and cortisol secretion and estimate the corresponding hormone half-lives. Complementary to deconvolution analysis, approximate entropy was used as a scale- and model-independent statistic to quantify the serial orderliness or pattern regularity of hormone measurements. RESULTS: Mean and integrated (24-h) serum GH concentrations were increased from baseline values to the same extent by two and three HEX injections. Both HEX schedules equally increased GH secretory burst mass (but not burst frequency), mean daily GH production rate, GH half-life and irregularity of GH release patterns. No change occurred in the secretion of IGF-I, PRL, ACTH and cortisol. Intravenous HEX at the end of each spontaneous 24-h profile induced a significant rise in GH, PRL, ACTH and cortisol. Prior HEX administration blunted the GH response, abolished that of ACTH and cortisol and did not modify the PRL increase. CONCLUSIONS: The study showed that two or three daily s.c. injections of HEX augmented 24-h GH secretion equally, amplifying selectively GH secretory pulse mass without altering lactotroph and corticotroph secretion. IGF-I levels were not modified by these 1-day HEX treatment schedules.


2001 ◽  
Vol 86 (3) ◽  
pp. 1013-1019
Author(s):  
Debra L. Waters ◽  
Clifford R. Qualls ◽  
Richard Dorin ◽  
Johannes D. Veldhuis ◽  
Richard N. Baumgartner

Amenorrheic athletes exhibit a spectrum of neuroendocrine disturbances, including alterations in the GH-insulin-like growth factor I (IGF-I) axis. Whether these changes are due to exercise or amenorrhea is incompletely characterized. The present study investigates spontaneous (overnight) and exercise-stimulated GH secretion and associated IGF-binding proteins (IGFBPs) in amenorrheic (AA; n = 5), and eumenorrheic athletes ( n = 5) matched for age, percent body fat (dual energy x-ray absorptiometry), training history, and maximal oxygen consumption. Each volunteer participated in two hospital admissions consisting of a 50-min submaximal exercise bout (70% maximal oxygen consumption) and an 8-h nocturnal sampling period. Deconvolution analysis of serum GH concentration time series revealed increases in the half-life of GH (60%) and the number of secretory bursts (85%) as well as a decrease in their half-duration (50%) and the mass of GH secreted per pulse (300%) in the AA cohort. Time occupancy at elevated trough GH concentrations was significantly increased, and GH pulsatility (approximate entropy) was more irregular in the AA group. During exercise, AA exhibited a reversal of the normal relationship between IGF-I and GH, and a 4- to 5-fold blunting of stimulated peak and integrated GH secretion. Fasting levels of plasma IGF-I, IGFBP-3, and IGFBP-1 appeared to be unaffected by menstrual status. In ensemble, this phenotype of GH release in amenorrheic athletes suggests disrupted neuroregulation of episodic GH secretion, possibly reflecting decreased somatostinergic inhibition basally, and reduced GHRH output in response to exercise compared with eumenorrheic athletes. Accordingly, we postulate that the amenorrheic state, beyond the exercise experience per se, alters the neuroendocrine control of GH output in amenorrheic athletes.



2008 ◽  
Vol 93 (11) ◽  
pp. 4471-4478 ◽  
Author(s):  
Johannes D. Veldhuis ◽  
Daniel M. Keenan ◽  
Joy N. Bailey ◽  
Adenborduin Adeniji ◽  
John M. Miles ◽  
...  

Background: Why pulsatile GH secretion declines in estrogen-deficient postmenopausal individuals remains unknown. One possibility is that estrogen not only enhances stimulation by secretagogues but also attenuates negative feedback by systemic IGF-I. Site: The study took place at an academic medical center. Subjects: Subjects were healthy postmenopausal women (n = 25). Methods: The study included randomized assignment to estradiol (n = 13) or placebo (n = 12) administration for 16 d and randomly ordered administration of 0, 1.0, 1.5, and 2.0 mg/m2 recombinant human IGF-I sc on separate days fasting. Analysis: Deconvolution analysis of pulsatile and basal GH secretion and approximate entropy (pattern-regularity) analysis were done to quantify feedback effects of IGF-I. Outcomes: Recombinant human IGF-I injections increased mean and peak serum IGF-I concentrations dose dependently (P < 0.001) and suppressed mean GH concentrations (P < 0.001), pulsatile GH secretion (P = 0.001), and approximate entropy (P < 0.001). Decreased GH secretion was due to reduced secretory-burst mass (P = 0.005) and frequency (P < 0.001) but not basal GH release (P = 0.52). Estradiol supplementation lowered endogenous, but did not alter infused, IGF-I concentrations while elevating mean GH concentrations (P = 0.012) and stimulating pulsatile (P = 0.008) and basal (P < 0.001) GH secretion. Estrogen attenuated IGF-I’s inhibition of pulsatile GH secretion (P = 0.042) but was unable to restore physiological GH pulse frequency or normalize approximate entropy. Conclusion: Short-term estrogen replacement in postmenopausal women selectively mutes IGF-I-mediated feedback on pulsatile GH secretion. Disinhibition of negative feedback thus confers a novel mechanism by which estrogen may obviate hyposomatotropism.



2006 ◽  
Vol 291 (6) ◽  
pp. R1749-R1755 ◽  
Author(s):  
Alexander P. Tuckow ◽  
Kevin R. Rarick ◽  
William J. Kraemer ◽  
James O. Marx ◽  
Wesley C. Hymer ◽  
...  

To characterize the effects of daytime exercise on subsequent overnight growth hormone (GH) secretion and elimination dynamics, serum was sampled, and GH was measured every 10 min for 12 h (1800 to 0600) in a control (CON) condition and after a 50-set resistance exercise protocol (EX) from 1500 to 1700. GH was measured with a conventional immunoreactive (IR) and an immunofunctional (IF) assay, and values were analyzed via a multi-parameter deconvolution analysis. EX resulted in a higher overnight secretory burst frequency [CON: 7.6 (SD 2.4) < EX: 9.4 (2.2) bursts per 12 h, P = 0.005] but lower mean burst mass [CON: 9.2 (4.7) > EX: 6.0 (2.9) μg/l, P = 0.019] and secretory rate [CON: 0.68 (0.29) > EX: 0.48 (0.23) μg/l/min; P = 0.015; ANOVA main effect means presented]. Approximate entropy (ApEn) was greater after EX, indicating a less orderly GH release process than CON. The estimated half-life of IF GH was significantly lower than IR GH [IF: 15.3 (1.1) < IR 19.8 (1.6) min, P < 0.001] but similar between the CON and EX conditions (∼17 min). Despite the changes in secretory dynamics, 12-h mean and integrated GH concentrations were similar between conditions. The results suggest that although quantitatively similar total amounts of GH are secreted overnight in CON and EX conditions, resistance exercise alters the dynamics of secretion by attenuating burst mass and amplitude yet increasing burst frequency.



1997 ◽  
pp. 377-386 ◽  
Author(s):  
K Friend ◽  
A Iranmanesh ◽  
IS Login ◽  
JD Veldhuis

Growth hormone (GH) release from the anterior pituitary gland is predominantly regulated by the two antagonistic hypothalamic peptides, growth hormone-releasing hormone (GHRH) and somatostatin. Appraising endogenous GHRH action is thus made difficult by the confounding effects of (variable) hypothalamic somatostatin inhibitory tone. Accordingly, to evaluate endogenous GHRH actions, we used a clinical model of presumptively acute endogenous somatostatin withdrawal with concomitant GHRH release. To this end, we administered in randomized order placebo or the indirect cholinergic agonist, pyridostigmine, for 48 h to 13 healthy men of varying ages (29-77 years) and body mass indices (21-47 kg/m2). We sampled blood at 10-min intervals for 48 h during both placebo and pyridostigmine (60 mg orally every 6 h) administration, and used an ultrasensitive GH chemiluminescence assay (sensitivity 0.0002-0.005 microgram/l) to capture GH pulse profiles. Multiparameter deconvolution analysis was applied to quantitate the number, amplitude, mass, and duration of significant underlying GH secretory bursts, and simultaneously estimate the GH half-life and concurrent basal GH secretion. Approximate entropy was utilized as a novel regularity statistic to quantify the relative orderliness of the hormone release process. All measures of GH secretion/half-life and orderliness were statistically invariant across the two consecutive 24-h placebo sessions. In contrast, pyridostigmine treatment significantly increased the mean serum GH concentration from 0.23 +/- 0.054 microgram/l during placebo to 0.45 +/- 0.072 microgram/l during the first day of treatment (P < 0.01). There was also a significant rise in the calculated 24-h pulsatile GH production rate from 8.9 +/- 1.7 micrograms/l/day on placebo to 27 +/- 5.6 micrograms/l/day during active drug treatment (P < 0.01). Pyridostigmine significantly and selectively amplified GH secretory burst mass to 1.5 +/- 0.35 micrograms/l compared with 0.74 +/- 0.19 microgram/l on placebo (P < 0.01). This was attributable to stimulation of GH secretory burst amplitude (maximal rate of GH secretion attained within the release episode) with no prolongation of estimated burst duration. Basal GH secretion and approximate entropy were not altered by pyridostigmine. However, age was strongly related to more disorderly GH release during both days of pyridostigmine treatment (r = +0.79, P = 0.0013). During the second 24-h of continued pyridostigmine treatment, most GH secretory parameters decreased by 15-50%, but in several instances remained significantly elevated above placebo. Body mass index, but not age, was a significantly negative correlate of the pyridostigmine-stimulated increase in GH secretion (r = -0.65, P = 0.017). In summary, assuming that somatostatin is withdrawn and (rebound) GHRH release is stimulated via pyridostigmine administration, we infer that relatively unopposed GHRH action principally controls GH secretory burst mass and amplitude, rather than apparent GH secretory pulse duration, the basal GH secretion rate, or the serial regularity/orderliness of the GH release process in the human. Moreover, we infer that increasing age is accompanied by greater disorderliness of somatostatin-withdrawn GHRH, and hence rebound GH, release. The strongly negative correlation between pyridostigmine-stimulated GH secretion and body mass index (but not age) further indicates that increased relative adiposity may result in decreased effective (somatostatin-withdrawn) endogenous GHRH stimulus strength.



2017 ◽  
Vol 6 (7) ◽  
pp. 500-509 ◽  
Author(s):  
Ferdinand Roelfsema ◽  
Diana van Heemst ◽  
Ali Iranmanesh ◽  
Paul Takahashi ◽  
Rebecca Yang ◽  
...  

Context Studies on 24-h cortisol secretion are rare. The impact of sex, age and adiposity on cortisol levels, often restricted to one or a few samples, are well recognized, but conflicting. Objective To investigate cortisol dynamics in 143 healthy men and women, spanning 7 decades and with a 2-fold body mass index (BMI) range with different analytic tools. Setting Clinical Research Unit. Design Cortisol concentrations in 10-min samples collected for 24 h. Outcomes were mean levels, deconvolution parameters, approximate entropy (ApEn, regularity statistic) and 24-h rhythms. Results Total 24-h cortisol secretion rates estimated by deconvolution analysis were sex, age and BMI independent. Mean 24-h cortisol concentrations were lower in premenopausal women than those in men of comparable age (176 ± 8.2 vs 217 ± 9.4 nmol/L, P = 0.02), but not in subjects older than 50 years. This was due to lower daytime levels in women, albeit similar in the quiescent overnight period. Aging increased mean cortisol by 10 nmol/L per decade during the quiescent secretory phase and advanced the acrophase of the diurnal rhythm by 24 min/decade. However, total 24-h cortisol secretion rates estimated by deconvolution analysis were sex, age and BMI independent. ApEn of 24-h profiles was higher (more random) in premenopausal women than those in men (1.048 ± 0.025 vs 0.933 ± 0.023, P = 0.001), but not in subjects older than 50 years. ApEn peaked during the daytime. Conclusion Sex and age jointly determine the 24-h cortisol secretory profile. Sex effects are largely restricted to age <50 years, whereas age effects elevate concentrations in the late evening and early night and advance the timing of the peak diurnal rhythm.



1997 ◽  
Vol 272 (6) ◽  
pp. E1108-E1116 ◽  
Author(s):  
N. Vahl ◽  
J. O. Jorgensen ◽  
C. Skjaerbaek ◽  
J. D. Veldhuis ◽  
H. Orskov ◽  
...  

We tested the hypothesis that body composition is the major predictor of growth hormone (GH) secretion in nonobese adults. We measured lean and fat tissue distribution (computerized tomography and dual-energy X-ray absorptiometry scan) and physical fitness [maximal oxygen consumption (Vo2max)] in 42 healthy nonobese adults (22 women and 20 men, age range 27-59 yr, mean +/- SE body mass index = 24 +/- 0.5 kg/m2). Deconvolution analysis was used to estimate specific features of 24-h GH secretion and clearance. Approximate entropy was used to quantify the regularity of GH release. Older subjects exhibited decreased estimates of GH secretion compared with younger subjects. Females had higher estimates of GH secretion, a longer GH half-life, and displayed more irregularity in GH release than males. Mean 24-h serum GH concentrations correlated inversely with intra-abdominal fat and waist-to-hip ratio and positively with Vo2max. Multiple linear regression analysis revealed intra-abdominal fat as the dominant determinant of estimates of GH secretion. Vo2max was more important than sex and age in predicting GH secretion. We conclude that abdominal fat is the major determinant of GH secretion in healthy nonobese adults. Although the underlying mechanisms remain elusive, our findings extend the clinical implications of visceral adiposity to include hyposomatotropism.



1996 ◽  
Vol 270 (6) ◽  
pp. E975-E979 ◽  
Author(s):  
E. Calabresi ◽  
E. Ishikawa ◽  
L. Bartolini ◽  
G. Delitala ◽  
G. Fanciulli ◽  
...  

In attempting to elucidate the neuroendocrine mechanisms that regulate pulsatile growth hormone (GH) secretion, we measured serum GH concentrations by an ultrasensitive immunofluorometric method in blood collected every 10 min for 8 h in 11 young healthy male volunteers (age range 21-31 yr) before and during somatostatin (SS) administration (an iv bolus dose of 350 micrograms followed by a continuous infusion at the rate of 6 micrograms.kg-1.h-1, which increases the circulating SS levels to approximately 570 pg/ml). Pulsatile GH secretion was analyzed using the computer-assisted pulse detection program cluster method and deconvolution analysis. The area and frequency of GH peaks were significantly reduced during SS infusion compared with basal values, but detectable pulsatile episodes were still present. These data suggest that, in adult males, SS controls pulsatile GH secretion and can decrease the mass and frequency of GH secretory bursts.



2000 ◽  
Vol 85 (1) ◽  
pp. 183-192
Author(s):  
G. Van den Berghe ◽  
R. C. Baxter ◽  
F. Weekers ◽  
P. Wouters ◽  
C. Y. Bowers ◽  
...  

Female gender appears to protect against adverse outcome from prolonged critical illness, a condition characterized by blunted and disorderly GH secretion and impaired anabolism. As a sexual dimorphism in the GH secretory pattern of healthy humans and rodents determines gender differences in metabolism, we here compared GH secretion and responsiveness to GH secretagogues in male and female protracted critically ill patients. GH secretion was quantified by deconvolution analysis and approximate entropy estimates of 9-h nocturnal time series in 9 male and 9 female patients matched for age (mean ± sd, 67 ± 11 and 67 ± 15 yr), body mass index, severity and duration of illness, feeding, and medication. Serum concentrations of PRL, TSH, cortisol, and sex steroids were measured concomitantly. Serum levels of GH-binding protein, insulin-like growth factor I (IGF-I), IGF-binding proteins (IGFBPs), and PRL were compared with those of 50 male and 50 female community-living control subjects matched for age and body mass index. In a second study, GH responses to GHRH (1 μg/kg), GH-releasing peptide-2 (GHRP-2; 1 μg/kg) and GHRH plus GHRP-2 (1 and 1 μg/kg) were examined in comparable, carefully matched male (n = 15) and female (n = 15) patients. Despite identical mean serum GH concentrations, total GH output, GH half-life, and number of GH pulses, critically ill men paradoxically presented with less pulsatile (mean ± sd pulsatile GH fraction, 39 ± 14% vs. 67 ± 20%; P = 0.002) and more disorderly (approximate entropy, 0.946 ± 0.113 vs. 0.805 ± 0.147; P = 0.02) GH secretion than women. Serum IGF-I, IGFBP-3, and acid-labile subunit (ALS) levels were low in patients compared with controls, with male patients revealing lower IGF-I (P = 0.01) and ALS (P = 0.005) concentrations than female patients. Correspondingly, circulating IGF-I and ALS levels correlated positively with pulsatile (but not with nonpulsatile) GH secretion. Circulating levels of GH-binding protein and IGFBP-1, -2, and -6 were higher in patients than controls, without a detectable gender difference. In female patients, PRL levels were 3-fold higher, and TSH and cortisol tended to be higher than levels in males. In both genders, estrogen levels were more than 3-fold higher than normal, and testosterone (2.25 ± 1.94 vs. 0.97 ± 0.39 nmol/L; P = 0.03) and dehydroepiandrosterone sulfate concentrations were low. In male patients, low testosterone levels were related to reduced GH pulse amplitude (r = 0.91; P = 0.0008). GH responses to GHRH were relatively low and equal in critically ill men and women (7.3 ± 9.4 vs. 7.8 ± 4.1 μg/L; P = 0.99). GH responses to GHRP-2 in women (93 ± 38 μg/L) were supranormal and higher (P &lt; 0.0001) than those in men (28 ± 16 μg/L). Combining GHRH with GHRP-2 nullified this gender difference (77 ± 58 in men vs. 120 ± 69 μg/L in women; P = 0.4). In conclusion, a paradoxical gender dissociation within the GH/IGF-I axis is evident in protracted critical illness, with men showing greater loss of pulsatility and regularity within the GH secretory pattern than women (despite indistinguishable total GH output) and concomitantly lower IGF-I and ALS levels. Less endogenous GHRH action in severely ill men compared with women, possibly due to profound hypoandrogenism, accompanying loss of the putative endogenous GHRP-like ligand action with prolonged stress in both genders may explain these novel findings.



2006 ◽  
Vol 155 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Johan Svensson ◽  
Gudmundur Johannsson ◽  
Ali Iranmanesh ◽  
Kerstin Albertsson-Wikland ◽  
Johannes D Veldhuis ◽  
...  

Objective: Some adolescents who discontinue GH treatment due to GH deficiency (GHD) and short stature in childhood do not have classical GHD at retesting in adult life. It is unknown whether there is a neuroendocrine disturbance in the spontaneous pattern of GH release in these patients. Design/patients/methods: Thirty-seven adolescents, who had received treatment with GH due to impaired longitudinal growth, were included. The adolescents were divided into two groups; one (GHD; n = 19) with classical GHD in adult life and another (GH sufficient (GHS); n = 18) without classical adult GHD. One year after GH discontinuation, 24-h GH profiles were performed with blood sampling every 30 min. Sixteen matched healthy controls were also studied. All blood samples were analysed using an ultrasensitive GH assay and then, approximate entropy (ApEn) and deconvolution analysis were performed. Results: The GHD group had higher mean ApEn level than the healthy controls (P < 0.05). As measured by deconvolution analysis, they had lower basal GH secretion (P < 0.01), increased number of GH peaks (P < 0.001), but lower burst mass (P < 0.001), lower percentage pulsatile GH secretion (P < 0.001) and lower total GH secretion (P < 0.001), compared with control subjects. Adolescents in the GHS group had a pattern of 24-h GH release similar to that in healthy controls. Conclusion: Young adults with childhood-onset severe GHD have a high-frequency, low-amplitude GH secretion with decreased orderliness. The adolescents without classical GHD in adult life maintain a pattern of spontaneous GH release that is not statistically different from that in the healthy controls.



2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Elisa Verrua ◽  
Emanuele Ferrante ◽  
Marcello Filopanti ◽  
Elena Malchiodi ◽  
Elisa Sala ◽  
...  

Acromegaly guidelines updated in 2010 revisited criteria of disease control: if applied, it is likely that a percentage of patients previously considered as cured might present postglucose GH nadir levels not adequately suppressed, with potential implications on management. This study explored GH secretion, as well as hormonal, clinical, neuroradiological, metabolic, and comorbid profile in a cohort of 40 acromegalic patients considered cured on the basis of the previous guidelines after a mean follow-up period of 17.2 years from remission, in order to assess the impact of the current criteria. At the last follow-up visit, in the presence of normal IGF-I concentrations, postglucose GH nadir was over 0.4 μg/L in 11 patients (Group A) and below 0.4 μg/L in 29 patients (Group B); moreover, Group A showed higher basal GH levels than Group B, whereas a significant decline of both GH and postglucose GH nadir levels during the follow-up was observed in Group B only. No differences in other evaluated parameters were found. These results seem to suggest that acromegalic patients considered cured on the basis of previous guidelines do not need a more intensive monitoring than patients who met the current criteria of disease control, supporting instead that the cut-off of 0.4 mcg/L might be too low for the currently used GH assay.



Sign in / Sign up

Export Citation Format

Share Document