Single exposure to testosterone in adulthood rapidly induces regularity in the growth hormone release process

2000 ◽  
Vol 278 (5) ◽  
pp. E933-E940 ◽  
Author(s):  
Jean-Claude Painson ◽  
Johannes D. Veldhuis ◽  
Gloria S. Tannenbaum

The neonatal gonadal steroid milieu is known to be important in imprinting the striking sexual dimorphism of growth hormone (GH) secretion; however, the influence of the sex steroids on GH control in adult life and their mechanism/site of action are largely unknown. In the present study, we tested the hypothesis that testosterone (T) subserves the gender-specific regularity of the GH release process in adulthood. The approximate entropy statistic (ApEn) was used to quantify the degree of regularity of GH release patterns over time. Eighteen hours after a single subcutaneous injection of 1 mg T, both sham-operated and ovariectomized (OVX) female adult rats displayed plasma GH profiles that were strikingly similar to the regular male-like ultradian rhythm of GH secretion. The highest ApEn values, denoting greater disorderliness of GH secretion, were observed in the ovary-intact group, and T injection significantly ( P < 0.001) reduced this irregularity whether or not the ovaries were present. Serial intravenous injections of GH-releasing hormone (GHRH) caused a similar increase in plasma GH levels in sham-operated females independently of time of administration. In contrast, female rats administered T exhibited a male-like intermittent pattern of GH responsiveness to GHRH, the latter known to be due to the cyclic release of endogenous somatostatin. These results demonstrate that acute exposure to T during adult life can rapidly and profoundly “masculinize” GH pulse-generating circuits in the female rat. Our findings suggest that the enhanced orderliness characteristic of the GH release process in males, compared with females, is regulated by T. We postulate that this T-induced regularity is mediated at the level of the hypothalamus by inducing regularity in somatostatin secretion, which in turn governs overall GH periodicity.

1996 ◽  
Vol 135 (4) ◽  
pp. 481-488 ◽  
Author(s):  
Antonio Torsello ◽  
Roberta Grilli ◽  
Marina Luoni ◽  
Margherita Guidi ◽  
Maria Cristina Ghigo ◽  
...  

Torsello A, Grilli R, Luoni M, Guidi M, Ghigo MC, Wehrenberg WB, Deghenghi R, Müller EE, Locatelli V. Mechanism of action of Hexarelin. I. Growth hormone-releasing activity in the rat. Eur J Endocrinol 1996;135:481–8. ISSN 0804–4643 We have reported Hexarelin (HEXA), an analog of growth hormone-releasing peptide 6 (GHRP-6), potently stimulates growth hormone (GH) secretion in infant and adult rats. This study was undertaken to further investigate Hexarelin's mechanisms of action. In 10-day-old pups, treatments with HEXA (80 μg/kg, b.i.d.) for 3–10 days significantly enhanced, in a time-related fashion, the GH response to an acute HEXA challenge. Qualitatively similar effects were elicited in pups passively immunized against growth hormone-releasing hormone (GHRH) from birth. In adult male rats, a 5-day pretreatment with HEXA (150 μg/kg, b.i.d.) did not enhance the effect of the acute challenge, and the same pattern was present after a 5-day pretreatment in male rats with surgical ablation of the mediobasal hypothalamus (MBH-ablated rats). In addition, in adult sham-operated rats, Hexarelin (300 μg/kg, iv) induced a GH response greater (p < 0.05) than that induced by GHRH (2 μg/kg, iv). However, in MBH-ablated rats 7 days after surgery, GHRH was significantly (p < 0.05) more effective than HEXA, and 30 days after surgery HEXA and GHRH evoked similar rises of plasma GH. Finally, the in vitro Hexarelin (10−6 mol/l) effect was transient while GHRH (10−8 mol/l) induced a longer lasting and greater GH release. Three different mechanisms, not mutually exclusive, are postulated for Hexarelin stimulation of GH secretion in vivo: a direct action on the pituitary, though of minor relevance; an indirect action that involves release of GHRH, of relevance only in adult rats; and an action through the release of a still unknown hypothalamic "factor", which in infant and adult rats elicits GH release acting sinergistically with GHRH. Antonio Torsello, Department of Pharmacology, via Vanvitelli 32, 20129 Milano, Italy


1987 ◽  
Vol 35 (3) ◽  
pp. 335-341 ◽  
Author(s):  
G Smets ◽  
B Velkeniers ◽  
E Finne ◽  
A Baldys ◽  
W Gepts ◽  
...  

Localization and ultrastructural maturation of prolactin (PRL) and growth hormone (GH) cells were studied in pituitaries from neonatal, immature (4-6 weeks old), and adult rats (2-3 months old) by light and electron microscopic immunocytochemistry. The distribution pattern of these cells did not change with age. Both cell types were concentrated laterodorsally, with PRL cells adjacent to the intermediate lobe and GH cells nearer the center of the pars distalis. Labeling density of the immunogold reaction was highest for both hormones in immature rats. In neonatal and immature rats, one PRL cell type with granules 200 nm in diameter was present. In adult rats, two types of PRL cells were present: one containing polymorphous granules measuring about 500 nm (prevalent in female rats), the other with spherical granules about 200 nm (prevalent in male rats). No changes were detected in GH cells during maturation.


1983 ◽  
Vol 103 (2) ◽  
pp. 172-179 ◽  
Author(s):  
J. Bíró ◽  
E. M. Ritzén ◽  
K. Hall ◽  
P. Eneroth

Abstract. Plasma concentrations and anterior pituitary content of growth hormone (rGH), thyroid stimulating hormone (rTSH), and rat prolactin (rPrl) as well as the plasma concentrations of triiodothyronine (T3), thyroxine (T4) and somatomedin A (SM-A) have been determined in intact, castrated or hysterectomized adult rats with and without treatment with steroid-free, crude uterine extracts. Hysterectomy caused a significant increase in the plasma GH but decrease in the plasma TSH concentrations. Injection of crude, steroid-free uterine extracts for 14 days had the following effects: decreased plasma GH concentration of intact rat and anterior pituitary GH content of both intact and castrated animals; increased plasma TSH and T3 concentrations above the ovariectomized control; decreased pituitary content of prolactin in castrated rats. The plasma levels of immunoreactive somatomedins A were negatively correlated to the plasma GH concentrations but positively correlated to the body weight. It was concluded that the uterus is not only a target for different endocrine influences but contains biologically active, non-steroidal substances which have a complex effect on the endocrine system of adult, female rats.


1989 ◽  
Vol 122 (2) ◽  
pp. 583-591 ◽  
Author(s):  
H. Sugihara ◽  
S. Minami ◽  
I. Wakabayashi

ABSTRACT To examine the characteristics of GH secretion following the termination of the infusion of somatostatin, unrestrained adult female Wistar rats were subjected to repeated infusions of somatostatin separated by 30-min control periods. When somatostatin was infused for 150 min at a dose of 3, 30 or 300 μg/kg body wt per h, the magnitude of the rebound GH secretion increased in a dose-dependent manner. The infusion of somatostatin at a dose of 300 μg/kg body wt per h for 60, 150 or 240 min progressively augmented the size of the rebound GH secretion. When an antiserum to rat GH-releasing factor (GRF) was injected i.v. 10 min before the end of the infusion, the peak amplitude of the rebound GH secretion (300 μg/kg body wt, 150 min) was reduced to less than 20% of that of control rats. The rebound GH secretion (300 μg/kg body wt per h, 150 min) was augmented by a bolus injection of human GRF (1 μg/kg body wt). The combined effect of the end of infusion of somatostatin and a bolus injection of GRF on the amount of GH secreted was additive. The plasma GH response to GRF was completely inhibited when human GRF (3 μg/kg body wt per h) and somatostatin (300 μg/kg body wt per h) were infused simultaneously for 150 min. The magnitude of the rebound GH secretion following the termination of the co-administration was larger than that following the somatostatin infusion alone, but this rebound was not enhanced by a bolus injection of human GRF. Moreover, the amount of GH secreted was significantly less than that after the termination of somatostatin infusion plus a bolus injection of human GRF in the absence of preceding GRF administration. These results suggest that at least part of the influence of somatostatin on GH secretion is exerted at the level of the hypothalamus through modulating the release of GRF. In addition, it is inferred that the simultaneous infusion of GRF and somatostatin induces the attenuation of the GH response to GRF through a receptor effect. Journal of Endocrinology (1989) 122, 583–591


2006 ◽  
Vol 291 (6) ◽  
pp. R1749-R1755 ◽  
Author(s):  
Alexander P. Tuckow ◽  
Kevin R. Rarick ◽  
William J. Kraemer ◽  
James O. Marx ◽  
Wesley C. Hymer ◽  
...  

To characterize the effects of daytime exercise on subsequent overnight growth hormone (GH) secretion and elimination dynamics, serum was sampled, and GH was measured every 10 min for 12 h (1800 to 0600) in a control (CON) condition and after a 50-set resistance exercise protocol (EX) from 1500 to 1700. GH was measured with a conventional immunoreactive (IR) and an immunofunctional (IF) assay, and values were analyzed via a multi-parameter deconvolution analysis. EX resulted in a higher overnight secretory burst frequency [CON: 7.6 (SD 2.4) < EX: 9.4 (2.2) bursts per 12 h, P = 0.005] but lower mean burst mass [CON: 9.2 (4.7) > EX: 6.0 (2.9) μg/l, P = 0.019] and secretory rate [CON: 0.68 (0.29) > EX: 0.48 (0.23) μg/l/min; P = 0.015; ANOVA main effect means presented]. Approximate entropy (ApEn) was greater after EX, indicating a less orderly GH release process than CON. The estimated half-life of IF GH was significantly lower than IR GH [IF: 15.3 (1.1) < IR 19.8 (1.6) min, P < 0.001] but similar between the CON and EX conditions (∼17 min). Despite the changes in secretory dynamics, 12-h mean and integrated GH concentrations were similar between conditions. The results suggest that although quantitatively similar total amounts of GH are secreted overnight in CON and EX conditions, resistance exercise alters the dynamics of secretion by attenuating burst mass and amplitude yet increasing burst frequency.


1987 ◽  
Vol 113 (2) ◽  
pp. 249-253 ◽  
Author(s):  
L. Ohlsson ◽  
O. Isaksson ◽  
J.-O. Jansson

ABSTRACT The influence of endogenous gonadal steroids in male and female rats on basal and growth hormone-releasing factor (GRF)-stimulated GH secretion from perifused anterior pituitaries was studied. After 75 min of perifusion with basal medium, freshly dissected pituitaries were exposed to human GRF(1–44) (10 nmol/l) for 15 min. Neonatal (day 1–2) or prepubertal (day 25) gonadectomy of male rats suppressed baseline GH release (ng/min per mg dry weight) as well as GRF-stimulated GH release by 40–70%. This effect was slightly more pronounced in neonatally gonadectomized animals. In prepubertally gonadectomized male rats, the suppression of GH release was completely reversed by testosterone replacement therapy. In female rats, prepubertal gonadectomy did not affect GH secretion from perifused pituitaries. However, treatment of ovariectomized female rats with oestradiol reduced baseline and GRF-induced GH release to levels lower than those observed in sham-operated or vehicle-treated ovariectomized animals. The data suggest that testicular androgen secretion in adult male rats increases the pituitary GH release in response to GRF in vitro, whereas ovarian oestrogen secretion is of less importance for the GRF responsiveness of female rat pituitaries. J. Endocr. (1987) 113,249–253


1997 ◽  
pp. 377-386 ◽  
Author(s):  
K Friend ◽  
A Iranmanesh ◽  
IS Login ◽  
JD Veldhuis

Growth hormone (GH) release from the anterior pituitary gland is predominantly regulated by the two antagonistic hypothalamic peptides, growth hormone-releasing hormone (GHRH) and somatostatin. Appraising endogenous GHRH action is thus made difficult by the confounding effects of (variable) hypothalamic somatostatin inhibitory tone. Accordingly, to evaluate endogenous GHRH actions, we used a clinical model of presumptively acute endogenous somatostatin withdrawal with concomitant GHRH release. To this end, we administered in randomized order placebo or the indirect cholinergic agonist, pyridostigmine, for 48 h to 13 healthy men of varying ages (29-77 years) and body mass indices (21-47 kg/m2). We sampled blood at 10-min intervals for 48 h during both placebo and pyridostigmine (60 mg orally every 6 h) administration, and used an ultrasensitive GH chemiluminescence assay (sensitivity 0.0002-0.005 microgram/l) to capture GH pulse profiles. Multiparameter deconvolution analysis was applied to quantitate the number, amplitude, mass, and duration of significant underlying GH secretory bursts, and simultaneously estimate the GH half-life and concurrent basal GH secretion. Approximate entropy was utilized as a novel regularity statistic to quantify the relative orderliness of the hormone release process. All measures of GH secretion/half-life and orderliness were statistically invariant across the two consecutive 24-h placebo sessions. In contrast, pyridostigmine treatment significantly increased the mean serum GH concentration from 0.23 +/- 0.054 microgram/l during placebo to 0.45 +/- 0.072 microgram/l during the first day of treatment (P < 0.01). There was also a significant rise in the calculated 24-h pulsatile GH production rate from 8.9 +/- 1.7 micrograms/l/day on placebo to 27 +/- 5.6 micrograms/l/day during active drug treatment (P < 0.01). Pyridostigmine significantly and selectively amplified GH secretory burst mass to 1.5 +/- 0.35 micrograms/l compared with 0.74 +/- 0.19 microgram/l on placebo (P < 0.01). This was attributable to stimulation of GH secretory burst amplitude (maximal rate of GH secretion attained within the release episode) with no prolongation of estimated burst duration. Basal GH secretion and approximate entropy were not altered by pyridostigmine. However, age was strongly related to more disorderly GH release during both days of pyridostigmine treatment (r = +0.79, P = 0.0013). During the second 24-h of continued pyridostigmine treatment, most GH secretory parameters decreased by 15-50%, but in several instances remained significantly elevated above placebo. Body mass index, but not age, was a significantly negative correlate of the pyridostigmine-stimulated increase in GH secretion (r = -0.65, P = 0.017). In summary, assuming that somatostatin is withdrawn and (rebound) GHRH release is stimulated via pyridostigmine administration, we infer that relatively unopposed GHRH action principally controls GH secretory burst mass and amplitude, rather than apparent GH secretory pulse duration, the basal GH secretion rate, or the serial regularity/orderliness of the GH release process in the human. Moreover, we infer that increasing age is accompanied by greater disorderliness of somatostatin-withdrawn GHRH, and hence rebound GH, release. The strongly negative correlation between pyridostigmine-stimulated GH secretion and body mass index (but not age) further indicates that increased relative adiposity may result in decreased effective (somatostatin-withdrawn) endogenous GHRH stimulus strength.


1990 ◽  
Vol 5 (3) ◽  
pp. 267-274 ◽  
Author(s):  
I. Porsch Hällstöm ◽  
J.-Å. Gustafsson ◽  
A. Blanck

ABSTRACT Expression of the c-myc gene was studied in the livers of male and female Wistar rats. Furthermore, the effects on hepatic c-myc expression of neonatal and adult castration, with or without testosterone supplementation, as well as of continuous administration of GH to intact males, were analysed. Expression of c-myc was low in 6-day-old animals of both sexes, reached a maximum at 35 days of age and declined to the level of adult animals at 70 days. In prepubertal animals, expression was higher in females, but was higher in males after the onset of puberty, the postpubertal female rat liver exhibiting 50–70% of the expression in males. Treatment of adult male rats with bovine GH in osmotic minipumps for 1 week reduced c-myc expression to the level of female rats. Castration, both neonatally and of adults, also feminized hepatic c-myc expression. Testosterone supplementation of the castrated animals increased the expression towards the level in sham-operated controls. These results indicate that the c-myc gene is regulated by the hypothalamo-pituitary-liver axis via the sex-differentiated pattern of GH secretion, in analogy with other sex-differentiated hepatic functions, such as metabolism of steroids and xenobiotics. Neuroendocrine regulation of a gene such as c-myc, which is involved in the control of cell proliferation and differentiation, represents another aspect of the complex influence of GH on various somatic functions.


1993 ◽  
Vol 128 (3) ◽  
pp. 197-201 ◽  
Author(s):  
Maria N Moreira-Andrés ◽  
Francisco J Cañizo ◽  
Federico Hawkins

The evaluation of growth hormone (GH) secretion is an important problem in pediatric endocrine practice. The diagnosis of GH insufficiency is based on the finding of a "blunted" GH response to GH provocative tests or on the demonstration of a decreased endogenous secretion. From a practical point of view, these methods are uncomfortable, expensive and time consuming. Recently, very sensitive specific assays to measure human GH in urine have been developed. We present a discussion of available data on these tests in order to estimate their role in the evaluation of a short or slowly growing child. The present available assays allow measuring very low levels of GH in a small sample of untreated urine. The main limitations of urinary GH measurement are the intrasubject variability, wide normal range, overlapping results in several GH secretory states and lack of information on GH pulsatility. However, most of these limitations also apply to other tests of GH secretion. The advantage of urinary GH tests is that they provide, in an easy procedure, information on serum GH concentration. There is good correlation between urinary and serum GH concentration and several findings suggest that urinary GH excretion reflects changes in plasma GH levels during the period of urine collection. Therefore, the usefulness of urinary GH measurement is that of a simpler and cheaper screening method for assessing integrated serum GH concentration in clinical practice.


1993 ◽  
Vol 264 (6) ◽  
pp. E986-E992 ◽  
Author(s):  
J. C. Byatt ◽  
N. R. Staten ◽  
W. J. Salsgiver ◽  
J. G. Kostelc ◽  
R. J. Collier

Recombinant bovine prolactin (rbPRL) or bovine growth hormone (rbGH) was administered to mature female rats (10/treatment group) by daily subcutaneous injection for 10 days. Doses ranged from 7 to 5,000 micrograms/day (0.03-24 mg/kg body wt). Both rbPRL and rbGH increased body weight gain and food intake, but these parameters were increased at lower doses of rbPRL (7-63 micrograms/day) than rbGH (> 190 micrograms/day). Weight gain and food intake were maximally stimulated by 190 micrograms/day rbPRL, whereas maximal increased weight gain was obtained with the highest dose of rbGH (5,000 micrograms/day). Total carcass protein was increased by both hormones; however, protein as a percentage of body weight was unchanged. Similarly, neither rbPRL nor rbGH changed the percentage of carcass moisture. Percentage of body fat was increased by rbPRL but was decreased by rbGH. Weight of the gastrointestinal tract and kidneys was increased by both hormones, but increases were in proportion to body weight gain. These data confirm that ungulate prolactin is a hyperphagic agent in the female rat. In addition, they suggest that, while prolactin stimulates growth in mature female rats, this growth is probably not via a somatogenic mechanism.


Sign in / Sign up

Export Citation Format

Share Document