Kinetic model of whole-body vanadium metabolism: studies in sheep

1986 ◽  
Vol 251 (2) ◽  
pp. R325-R332 ◽  
Author(s):  
B. W. Patterson ◽  
S. L. Hansard ◽  
C. B. Ammerman ◽  
P. R. Henry ◽  
L. A. Zech ◽  
...  

A compartmental model for vanadium metabolism in sheep has been proposed. The model is consistent with data obtained from sheep fed a control diet (2.6 ppm vanadium) containing 0 or 200 ppm supplemental vanadium. Sheep were administered 48V dioxovanadium either orally or intravenously. Blood, feces, and urine radioactivity were monitored for 6 days postdosing. Several new insights regarding vanadium metabolism are suggested and tested against the data using the model. Some of these include significant absorption of 48V occurs from the upper gastrointestinal tract; an in vivo process is necessary in order for 48V dioxovanadium to be converted into a more biologically reactive species; at steady state the upper and lower gastrointestinal tracts contain at least 10- and 100-fold more mass of vanadium, respectively, than does blood. No statistically significant differences in transport rate constants were found between animals receiving 0 and 200 ppm supplemental dietary vanadium. The availability of a model will enable the refinement of future studies regarding vanadium metabolism in the ruminant.

1991 ◽  
Vol 261 (4) ◽  
pp. E539-E550 ◽  
Author(s):  
C. Cobelli ◽  
M. P. Saccomani ◽  
P. Tessari ◽  
G. Biolo ◽  
L. Luzi ◽  
...  

The complexity of amino acid and protein metabolism has limited the development of comprehensive, accurate whole body kinetic models. For leucine, simplified approaches are in use to measure in vivo leucine fluxes, but their domain of validity is uncertain. We propose here a comprehensive compartmental model of the kinetics of leucine and alpha-ketoisocaproate (KIC) in humans. Data from a multiple-tracer administration were generated with a two-stage (I and II) experiment. Six normal subjects were studied. In experiment I, labeled leucine and KIC were simultaneously injected into plasma. Four plasma leucine and KIC tracer concentration curves and label in the expired CO2 were measured. In experiment II, labeled bicarbonate was injected into plasma, and labeled CO2 in the expired air was measured. Radioactive (L-[1-14C]leucine, [4,5-3H]KIC, [14C]bicarbonate) and stable isotope (L-[1-13C]leucine, [5,5,5-2H3]KIC, [13C]bicarbonate) tracers were employed. The input format was a bolus (impulse) dose in the radioactive case and a constant infusion in the stable isotope case. A number of physiologically based, linear time-invariant compartmental models were proposed and tested against the data. The model finally chosen for leucine-KIC kinetics has 10 compartments: 4 for leucine, 3 for KIC, and 3 for bicarbonate. The model is a priori uniquely identifiable, and its parameters were estimated with precision from the five curves of experiment I. The separate assessment of bicarbonate kinetics (experiment II) was shown to be unnecessary. The model defines masses and fluxes of leucine in the organism, in particular its intracellular appearance from protein breakdown, its oxidation, and its incorporation into proteins. An important feature of the model is its ability to estimate leucine oxidation by resolving the bicarbonate model in each individual subject. Finally, the model allows the assessment of the domain of validity of the simpler commonly used models.


1993 ◽  
Vol 73 (4) ◽  
pp. 855-868 ◽  
Author(s):  
J. M. Kelly ◽  
B. G. Southorn ◽  
C. E. Kelly ◽  
L. P. Milligan ◽  
B. W. McBride

The effect of level of nutrition on in vitro and in vivo O2 consumption by the gastrointestinal tract in four nonlactating, nonpregnant ewes catheterized in the anterior mesenteric vein, hepatic portal vein and mesenteric artery with duodenal cannulae was investigated. Animals were fed a pelleted ration at maintenance (M) or twice maintenance (2M) or fasted (F) subsequent to the M measurement. Duodenal in vitro O2, ouabain-sensitive O2 (OSO2) and cycloheximide-sensitive O2 (CSO2) consumption was determined polarographically using a YSI O2 monitor; whole-gut O2 consumption was determined as (arterio-venous difference of O2 concentration) × (blood flow through the PV). Whole-body O2 consumption was determined using indirect calorimetry. Ewes fed 2M exhibited higher (P < 0.10) whole-body O2 consumption than either M or F ewes. Ewes fed M and 2M had higher (P < 0.10) duodenal in vitro O2 and ouabain-insensitive O2 (OIO2) consumption than F ewes. Hepatic portal blood flow was directly proportional to level of intake (P < 0.10): it was lowest for F ewes (81.0 L h−1), intermediate for M ewes (97.7 L h−1) and highest for 2M ewes (122.5 L h−1). Ouabain inhibition of O2 consumption by portal-drained viscera (PDV) was highest in M ewes and lowest in 2M ewes (P < 0.10). CSO2 consumption by the entire PDV was not affected by level of intake, corresponding to no change in OIO2 consumption by the PDV. As a proportion of whole-body O2 consumption, total O2, OSO2 and cycloheximide-insensitive O2 consumption by the PDV was higher in F ewes than in 2M ewes (P < 0.10). Fasted ewes expended a greater proportion of whole-body O2 consumption on gastrointestinal energetics than did 2M ewes. Key words: Sheep, gastrointestinal oxygen consumption, sodium–potassium ATPase, protein synthesis


1963 ◽  
Vol 41 (9) ◽  
pp. 1847-1854 ◽  
Author(s):  
Ladislav Janský

The cytochrome oxidase activity was estimated in homogenates of the whole body and in nine body organs of cold- and warm-acclimated rats. The total body cytochrome oxidase activity expressed in terms of oxygen consumption was similar in cold- and warm-acclimated rats. In cold-acclimated animals the total cytochrome oxidase activity did not differ from maximal steady state metabolism measured in vivo, while in warm-acclimated rats the total cytochrome oxidase activity was almost twice as great as the maximal steady state metabolism. The results indicate that warm-acclimated rats do not utilize the full capacity of the cytochrome system and that cold-acclimation makes full exploitation of the oxidase capacity possible. In cold-acclimated rats the cytochrome oxidase activity of the muscles comprised 57% of the total, the liver 22.5%, and the skin 6%, with smaller roles for other organs. The role of the liver was greater in cold-acclimated than in warm-acclimated rats.


1987 ◽  
Vol 253 (6) ◽  
pp. E648-E656 ◽  
Author(s):  
D. A. Hood ◽  
R. L. Terjung

An isolated single rat hindlimb muscle preparation was used to examine the influence of exercise training on leucine metabolism during steady-state conditions at rest and during isometric contractions. Treadmill training increased the activity of citrate synthase in the hindlimb muscle by 40-45%. Leucine oxidation, measured as the rate of alpha-decarboxylation, was not different between trained (2.28 +/- 0.15 nmol.min-1.g-1, n = 9) and control (2.57 +/- 0.20, n = 9) muscle at rest. In addition, successive 40-min contraction periods at 15 and 45 tetani/min induced similar increases (50 and 100%, respectively) in leucine oxidation in both groups. However, trained muscle maintained a greater tension output (P less than 0.05) during contractions and exhibited a greater oxygen consumption (VO2) (P less than 0.05) during 45 tetani/min. Thus the rate of leucine oxidation, relative to VO2, was less (P less than 0.05) in the trained group. This response was probably related to differences in intracellular factors modulating branched-chain alpha-keto acid dehydrogenase, the rate-limiting step in leucine oxidation. Although our observed rates of muscle leucine alpha-decarboxylation can reasonably account for the rates of whole-body leucine alpha-decarboxylation of nontrained individuals found during steady-state tracer studies in vivo, this is less reasonably the case for the trained group. This suggests that a greater rate of leucine oxidation by nonmuscle tissues (e.g., liver) may occur in trained compared with nontrained individuals.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1432-1432 ◽  
Author(s):  
Michele P Lambert ◽  
Ronghua Meng ◽  
Dawn Harper ◽  
Liqing Xiao ◽  
Michael S. Marks ◽  
...  

Abstract Platelet factor 4 (PF4, CXCL4) is a major chemokine in megakaryocytes (megs). It is synthesized almost exclusively by megs during their development and may have important roles in regulating both hematopoietic stem cell and megakaryocyte proliferation. We now show that megs both release significant amounts of PF4 into their environment as well as take up PF4 into alpha granules. This PF4 is then available for release by thrombin activation. We examined PF4 recycling during megakaryopoiesis based on the observation that in vitro-cultured human meg hematopoietic precursors release significant amounts of PF4 into the media beginning after approximately 7 days of culture, when definitive megs begin to emerge. Using immunohistochemistry, we find that in vivo in murine bone marrow, human PF4 (hPF4) is released by hPF4 transgenic (hPF4+) megs during the steady-state, and this release is markedly accentuated 48 hours after sub-lethal 660 cGy whole body irradiation from an X-ray source to induce bone marrow injury. By comparison, animals without endogenous PF4 expression (Pf4-/-) showed only background staining. After irradiation, the levels of PF4 staining within the hPF4+ megs decreased with a concomitant increase in background staining suggesting that the stored PF4 was released into the bone marrow milieu. The increase in the PF4 staining in the intramedullary space was not due to released PF4 from entrapped platelets as similar changes were seen in untreated hPF4+ mice and in mice made thrombocytopenic by injection of antiCD41 antibody. We then asked whether the released PF4 could be taken back up by the megs and whether internalized PF4 could reach significant levels compared to endogenously synthesized PF4. We show that murine megs can take up significant levels of hPF4 so that peak hPF4 uptake at 24 hours (19±2 ng/10e6 cells) is equivalent to the amount of mouse (m) PF4 (30±1 ng/106 cells) natively present within the megs. Blocking antibodies to either PF4 itself or to lipoprotein receptor related protein 1 (LRP1) prevented PF4 uptake (53±17 IU/10e6 cells and 32±9 IU/10e6, respectively, vs 95±9 IU/10e6 cells, p <0.01, for either vs. no treatment), consistent with our previous report that LRP1 was necessary for PF4’s negative paracrine effect on megakaryopoiesis. The PF4 that was taken up by megs localizes at least in part to alpha granules, as evidenced by co-localization with P-selectin by immunofluorescence microscopy. Quantification showed a higher degree of colocalization between endogenous mPF4 and internalized hPF4 than between other alpha-granule markers, including vWF, P-selectin and internalized fibrinogen. Moreover like endogenous mPF4, the internalized PF4 can be re-released upon thrombin-induced meg activation. Finally, we asked whether the PF4 uptake was unusual and began by studying uptake of the related chemokine, platelet basic protein (PBP, CXCL7), another protein synthesized by megs and stored in alpha-granules. Unlike PF4, PBP was not internalized by megs as judged by immunohistochemistry or ELISA, indicating that the ability to be internalized and re-released is a relatively unique property of PF4. In summary, we demonstrate that PF4 - an important regulator of megakaryopoiesis and hematopoiesis - is released by megs in the intramedullary space at steady-state and even more so when stressed. Moreover, the released PF4 can be taken up into alpha-granules and stored for potential rerelease. Whether this complex cycle of PF4 in megs is unique to PF4 or applies to other alpha-granular proteins and whether it is necessary for the PF4 effect on hematopoiesis/ megakaryopoiesis needs further investigation Disclosures Xiao: ECRI Institute: Employment.


1980 ◽  
Vol 239 (1) ◽  
pp. E30-E38
Author(s):  
D. M. Foster ◽  
G. Hetenyl ◽  
M. Berman

To account for the exchange of carbon atoms among alanine, lactate, and glucose in vivo, [2,3-3H]- and [U-14C]alanine or [3-3H]- and [U-14C]glucose were injected simultaneously to nonanesthetized normal dogs. The concentrations in plasma of 14C-labeled alanine, lactate, and glucose, and the injected 3H-labeled substrate were followed for 160 min after injection of the tracers. An integrated kinetic model describing the exchange of carbon atoms among substrates was developed from these data. The analysis suggests that there is a very rapid exchange of the carboxyl carbon of alanine with lactate in contrast to carbons 2 and 3. The model was used to calculate the fluxes of carbon atoms among the substrates in a steady state. In normal dogs plasma alanine and lactate contribute 14% of the carbon atoms released into the circulation as glucose.


2000 ◽  
Vol 89 (5) ◽  
pp. 2000-2006 ◽  
Author(s):  
Jennifer D. Gresham ◽  
Koji Okamura ◽  
Phillip E. Williams ◽  
Kareem Jabbour ◽  
Paul J. Flakoll

Whole body oxidative rates of labeled substrates are often measured by collecting expired air and determining the amount of labeled CO2 that is produced. However, the CO2 produced may not be completely recovered under all circumstances, and there is a wide variation in values reported under different experimental conditions (∼50–100%). The potential contribution of specific organs to this variation has not been defined. In vivo studies using healthy, postabsorptive, multicatheterized conscious canines were conducted to determine gastrointestinal tract, hepatic, hindlimb, and renal recoveries of NaH14CO3 during a 180-min constant infusion [0.022 ± 0.002 (SE) μCi · kg−1 · min−1]. Before the constant infusion period, a bolus infusion of NaH14CO3 (1.76 ± 0.16 μCi/kg) was given, and the rate of decay in blood was measured over a 15-min period to determine pool size. The pool size for the distribution of14CO2 was ∼80% of the total body pool (16.0 ± 1.7 liters). Whole body recovery was 97.2 ± 6.7%. The recoveries across the liver, gut, leg, and kidney were 99.9 ± 1.3, 98.0 ± 1.4, 96.7 ± 2.6, and 99.9 ± 2.1%, respectively. In conclusion, hepatic, gastrointestinal tract, hindlimb, and renal recoveries of CO2 in vivo were near 100%, suggesting that CO2 loss is not greater in gluconeogenic organs and that corrections for incomplete recovery of CO2, when measuring oxidation of substrates across these organs under normal postabsorptive conditions, would be very minor.


1990 ◽  
Vol 10 (4) ◽  
pp. 510-526 ◽  
Author(s):  
George C. Newman ◽  
Frank E. Hospod ◽  
Clifford S. Patlak

A six-compartment, nine-parameter kinetic model of 2-deoxyglucose (2DG) metabolism, which includes bidirectional tissue transport, phosphorylation, two-step dephosphorylation, phosphoisomerization, and conjugation to UDP and macromolecules, has been derived. Data for analysis were obtained from 540- and 1,000-μm-thick hippocampal and hypothalamic brain slices, which were incubated in buffer containing [14C]2DG, frozen, extracted with perchlorate, and separated on anion-exchange columns. Solutions of the equations of the model were fit to the data by means of nonlinear least-squares analysis. These studies suggest that dephosphorylation is adequately described by a single reaction so that the model reduces to eight parameters. The in vitro rate constants for transport, phosphorylation, and dephosphorylation are very similar to prior in vivo results. The phosphoisomerization rate constant is similar to dephosphorylation, so glycosylated macromolecules slowly accumulate and gradually assume larger relative importance as other compounds disappear more rapidly. Rate constants for 540-μm slices from hypothalamus and hippocampus are similar, while 1,000-μm slices have smaller tissue transport constants and larger phosphorylation constants. The rate equation for glucose utilization of this model is relatively insensitive to uncertainties regarding the rate constants. Including later metabolic components in kinetic models improves the calculations of glucose utilization with long isotope exposures.


Sign in / Sign up

Export Citation Format

Share Document