Angiotensin and Na appetite of sheep

1986 ◽  
Vol 251 (4) ◽  
pp. R690-R699 ◽  
Author(s):  
R. S. Weisinger ◽  
D. A. Denton ◽  
M. J. McKinley ◽  
A. F. Muller ◽  
E. Tarjan

The effect of both intravenous (iv; 24 micrograms/h) and intracerebroventricular (ivt; 3.8 micrograms/h) infusion over 1-2 days of angiotensin II (ANG II) on Na intake of both Na-replete and -deplete sheep (i.e., 22 h loss of parotid saliva) was observed. In Na-replete sheep with continuous access to water and 2-h daily access to 0.5 M NaCl solution, both iv and ivt ANG II caused an increase in Na intake. The increase in Na intake caused by iv or ivt ANG II was preceded by a Na deficit due to increased urinary Na excretion. The increase in Na intake was eliminated by the continuous return of urine. In Na-deplete sheep with continuous access to water and 2-h daily access to 0.6 M NaHCO3 solution, iv ANG II caused no change in Na loss but a small increase in Na intake during the 1st day of infusion. The ivt ANG II caused no change in Na loss or in Na intake. The iv ANG II caused a small and inconsistent increase in water intake in Na-replete sheep but did not cause any change in water intake of Na-deplete sheep. The ivt ANG II caused a large increase in water intake in both Na-replete and -deplete sheep. In both Na-replete and -deplete sheep, iv ANG II did not alter cerebrospinal fluid or plasma [Na] or osmolality but decreased plasma [K]. The ivt ANG II decreased both cerebrospinal fluid and plasma [Na] and osmolality. The results of the present experiments are consistent with the proposition that the ANG II-induced Na appetite in sheep is largely due to an ANG II-induced Na loss preceding the development of appetite.

1997 ◽  
Vol 272 (4) ◽  
pp. R1055-R1059 ◽  
Author(s):  
M. Mathai ◽  
M. D. Evered ◽  
M. J. McKinley

We investigated the contribution of brain angiotensinergic mechanisms to postprandial drinking in sheep. Sheep in fluid balance were given 0.8 kg chaff for 30 min, and water intake was measured for the next hour. Intracerebroventricular infusion of the AT1 type angiotensin II (ANG II) receptor blocker losartan (1 mg/h) reduced postprandial drinking by approximately 70% (n = 7, P < 0.01) but did not affect food intake. The same losartan dose given intravenously had little or no effect on prandial drinking. Feeding increased Na+ concentrations in plasma and cerebrospinal fluid (CSF; n = 5, P < 0.05). Intracerebroventricular losartan (1 mg/h) inhibited the drinking responses to intracarotid infusion of ANG II (0.8 microg/min for 30 min, n = 4, P < 0.01) and to intracerebroventricular infusion of 0.5 M NaCl (1 ml/h for 1 h, n = 5, P < 0.05) but had no effect on drinking responses to intravenous infusion of 4 M NaCl (1.3 ml/min for 30 min). These findings indicate that a brain ANG II-dependent mechanism is involved in postprandial drinking in sheep. They suggest also that the mechanism by which increasing CSF Na+ causes thirst involves brain ANG II and is different from the mechanism subserving the drinking response to changes in blood Na+.


1995 ◽  
Vol 268 (6) ◽  
pp. R1401-R1405 ◽  
Author(s):  
M. el Ghissassi ◽  
S. N. Thornton ◽  
S. Nicolaidis

The angiotensin receptor specificity, with respect to fluid intake, of the organum cavum prelamina terminalis (OCPLT), a recently discovered discrete forebrain structure with high sensitivity to angiotensin II (ANG II), was investigated. ANG II (10 ng) microinjected into the OCPLT significantly increased water consumption but did not induce intake of a hypertonic (3%) NaCl solution. Losartan, an ANG II type 1 (AT1) receptor-specific antagonist, produced dose-related (1-100 ng) inhibition of ANG II-induced drinking. The ANG II type 2 receptor-specific antagonist CGP-42112A was ineffective. Intake of the 3% NaCl solution in response to microinjection of either of the antagonists into the OCPLT was never observed. These findings suggest that water intake produced by microinjection of ANG II into the OCPLT is mediated by AT1 receptors uniquely and that, in contrast to other regions of the brain, these receptors do not induce salt intake when stimulated by ANG II.


1993 ◽  
Vol 265 (3) ◽  
pp. R591-R595 ◽  
Author(s):  
R. L. Thunhorst ◽  
S. J. Lewis ◽  
A. K. Johnson

Intracerebroventricular (icv) infusion of angiotensin II (ANG II) in rats elicits greater water intake under hypotensive, compared with normotensive, conditions. The present experiments used sinoaortic baroreceptor-denervated (SAD) rats and sham-operated rats to examine if the modulatory effects of arterial blood pressure on water intake in response to icv ANG II are mediated by arterial baroreceptors. Mean arterial blood pressure (MAP) was raised or lowered by intravenous (i.v.) infusions of phenylephrine (1 or 10 micrograms.kg-1 x min-1) or minoxidil (25 micrograms.kg-1 x min-1), respectively. The angiotensin-converting enzyme inhibitor captopril (0.33 mg/min) was infused i.v. to prevent the endogenous formation of ANG II during testing. Urinary excretion of water and solutes was measured throughout. Water intake elicited by icv ANG II was inversely related to changes in MAP. Specifically, rats drank more water in response to icv ANG II when MAP was reduced by minoxidil but drank less water when MAP was elevated by phenylephrine. The influence of changing MAP on the icv ANG II-induced drinking responses was not affected by SAD. These results suggest that the modulatory effects of arterial blood pressure on icv ANG II-induced drinking can occur in the absence of sinoaortic baroreceptor input.


Hypertension ◽  
2019 ◽  
Vol 74 (6) ◽  
pp. 1499-1506 ◽  
Author(s):  
Ninitha Asirvatham-Jeyaraj ◽  
A. Daniel Jones ◽  
Robert Burnett ◽  
Gregory D. Fink

This study tested whether brain L-PGDS (lipocalin-type prostaglandin [PG] D synthase), through prostanoid signaling, might increase neurogenic pressor activity and thereby cause hypertension. Sprague Dawley rats on high-salt diet received either vehicle or Ang II (angiotensin II) infusion. On day 4, the developmental stage of hypertension, brains from different sets of control and Ang II–treated rats were collected for measuring L-PGDS expression, PGD2 levels, and DP1R (type 1 PGD2 receptor) expression. In a different set of 14-day Ang II-salt–treated rats, mini-osmotic pumps were used to infuse either a nonselective COX (cyclooxygenase) inhibitor ketorolac, L-PGDS inhibitor AT56, or DP1R inhibitor BWA868C to test the role of brain COX-PGD2-DP1R signaling in Ang II-salt hypertension. The acute depressor response to ganglion blockade with hexamethonium was used to quantify neurogenic pressor activity. During the developmental stage of Ang II-salt hypertension, L-PGDS expression was higher in cerebrospinal fluid, and PGD2 levels were increased in the choroid plexus, cerebrospinal fluid, and the cardioregulatory brain region rostral ventrolateral medulla. DP1R expression was decreased in rostral ventrolateral medulla. Both brain COX inhibition with ketorolac and L-PGDS inhibition with AT56 lowered mean arterial pressure by altering neurogenic pressor activity compared with vehicle controls. Blockade of DP1R with BWA868C, however, increased the magnitude of Ang II-salt hypertension and significantly increased neurogenic pressor activity. In summary, we establish that the development of Ang II-salt hypertension requires increased COX- and L-PGDS–derived PGD2 production in the brain, making L-PGDS a possible target for treating neurogenic hypertension.


1987 ◽  
Vol 253 (2) ◽  
pp. R285-R291 ◽  
Author(s):  
D. A. Gray ◽  
E. Simon

Osmolalities and, by radioimmunoassay, the contents of arginine vasotocin (AVT) and angiotensin II (ANG II) in simultaneously collected cisternal cerebrospinal fluid (CSF) and plasma samples were determined in chronically prepared conscious Pekin ducks (Anas platyrhynchos) adapted to either freshwater (FW ducks) or salt water (2% saline, SW ducks) for drinking. In FW ducks the AVT in CSF was approximately 10-fold higher than in plasma; ANG II concentration in CSF was about two-thirds of that in plasma. In SW ducks concentrations of AVT were increased approximately threefold and of ANG II fourfold in both CSF and plasma. Dehydration in FW ducks (24-48 h) increased AVT and ANG II in both CSF and plasma, the relative rise being greater in plasma. Within 150 min after rehydration plasma AVT fell at unchanged CSF AVT, whereas CSF ANG II fell at unchanged plasma ANG II. Hydration of SW ducks with freshwater had similar effects. The results indicate separate avenues of release of central and systemic AVT and ANG II and support the idea of an independent control of central ANG II as a mediator in osmoregulation, with CSF AVT reflecting the state of osmoregulatory activity of the hypothalamopituitary vasotocinergic system.


1999 ◽  
Vol 277 (1) ◽  
pp. R162-R172 ◽  
Author(s):  
R. S. Weisinger ◽  
J. R. Blair-West ◽  
P. Burns ◽  
D. A. Denton

The influence of prolonged ingestion of ethanol on stimulation of water or ethanol intake by intracerebroventricular infusion of ANG II was evaluated in rats. Animals were maintained for 5–6 mo with either 10% ethanol solution or water as their only source of fluid. In both groups of rats, infusion of ANG II caused a large increase in water intake (7-fold) and a lesser increase in 10% ethanol intake (2-fold). The effect of ANG II on the volume of ethanol solution ingested, however, was inversely related to the concentration of the ethanol solution. As the concentration of ethanol solution was decreased, frequency and duration of drinking bouts increased. The intake of sweetened 10% ethanol solution or commercially produced wine during infusion of ANG II was similar to the intake of 10% ethanol and not related to taste preference. In conclusion, chronic consumption of ethanol solution did not appear to adversely effect ANG II stimulation of water intake. The intake of ethanol solution during infusion of ANG II was inhibited by a direct effect of ingested ethanol and/or by indirect effect from metabolized ethanol.


Endocrinology ◽  
2016 ◽  
Vol 157 (8) ◽  
pp. 3140-3148 ◽  
Author(s):  
Kenjiro Muta ◽  
Donald A. Morgan ◽  
Justin L. Grobe ◽  
Curt D. Sigmund ◽  
Kamal Rahmouni

Mechanistic target of rapamycin complex 1 (mTORC1) is a molecular node that couples extracellular cues to a wide range of cellular events controlling various physiological processes. Here, we identified mTORC1 signaling as a critical mediator of angiotensin II (Ang II) action in the brain. In neuronal GT1–7 cells, we show that Ang II stimulates neuronal mTORC1 signaling in an Ang II type 1 receptor-dependent manner. In mice, a single intracerebroventricular (ICV) injection or chronic sc infusion of Ang II activated mTORC1 signaling in the subfornical organ, a critical brain region in cardiovascular control and fluid balance. Moreover, transgenic sRA mice with brain-specific overproduction of Ang II displayed increased mTORC1 signaling in the subfornical organ. To test the functional role of brain mTORC1 in mediating the action of Ang II, we examined the consequence of mTORC1 inhibition with rapamycin on Ang II-induced increase in water intake and arterial pressure. ICV pretreatment with rapamycin blocked ICV Ang II-mediated increases in the frequency, duration, and amount of water intake but did not interfere with the pressor response evoked by Ang II. In addition, ICV delivery of rapamycin significantly reduced polydipsia, but not hypertension, of sRA mice. These results demonstrate that mTORC1 is a novel downstream pathway of Ang II type 1 receptor signaling in the brain and selectively mediates the effect of Ang II on drinking behavior.


1990 ◽  
Vol 70 (2) ◽  
pp. 711-714
Author(s):  
A. A. DEGEN ◽  
B. A. YOUNG

Five calves were denied water for 112 d during winter but had access to snow as a water source (snow calves) and were compared with five calves that had continuous access to water (water calves). All calves were then given continuous access to water for a further 56 d. There was no significant difference between groups in water intake or average daily gain except at the beginning of the 56 d rewatering period when the snow calves drank more water per kg body mass than the water calves. Key words: Calves (weaned), average daily gain, snow, water intake, water influx, tritiated water


2002 ◽  
Vol 282 (3) ◽  
pp. R865-R869 ◽  
Author(s):  
Chagriya Kitiyakara ◽  
William J. Welch ◽  
Joseph G. Verbalis ◽  
Christopher S. Wilcox

Central angiotensin II (ANG II) regulates thirst. Because thromboxane A2-prostaglandin H2 (TP) receptors are expressed in the brain and mediate some of the effects of ANG II in the vasculature, we investigated the hypothesis that TP receptors mediate the drinking response to intracerebroventricular (icv) injections of ANG II. Pretreatment with the specific TP-receptor antagonist ifetroban (Ifet) decreased water intake with 50 ng/kg icv ANG II (ANG II + Veh, 7.2 ± 0.7 ml vs. ANG II + Ifet, 2.8 ± 0.8 ml; n = 5 rats; P < 0.001) but had no effect on water intake induced by hypertonic saline (NaCl + Veh, 8.4 ± 1.1 ml vs. NaCl + Ifet, 8.9 ± 1.8 ml; n = 5 rats; P = not significant). Administration of 0.6 μg/kg icv of the TP-receptor agonist U-46,619 did not induce drinking when given alone but did increase the dipsogenic response to a near-threshold dose of 15 ng/kg icv ANG II (ANG II + Veh, 1.1 ± 0.7 vs. ANG II + U-46,619, 4.5 ± 0.9 ml; n = 5 rats; P < 0.01). We conclude that central TP receptors contribute to the dipsogenic response to ANG II.


1991 ◽  
Vol 261 (3) ◽  
pp. R647-R651 ◽  
Author(s):  
L. A. Camargo ◽  
W. A. Saad ◽  
A. Renzi ◽  
L. A. de Luca Junior ◽  
J. R. Goncalves ◽  
...  

Water and 3% NaCl intake were increased by the injection of 4 ng angiotensin II (ANG II) into the anteroventral third ventricle (AV3V) region of rats. Pretreatment with two specific ANG II receptor antagonists, [octanoyl-Leu8]ANG II and [Leu8]ANG II, significantly reduced ANG II-induced water and saline intake. This inhibition lasted approximately 30 min, with partial recovery at 60 min. In rats with electrolytic lesion of the bilateral ventromedial nucleus of hypothalamus (VMH), the effect of ANG II on water intake was not different from that observed in sham rats, but saline ingestion increased. In summary, the present results show that the AV3V region is an important central structure for ANG II-induced saline ingestion. Lesion of the VMH increases the response to ANG II, showing an interaction between the AV3V region and the VMH in the regulation of salt ingestion.


Sign in / Sign up

Export Citation Format

Share Document