Effects of hypothalamic stimulation and lesion on adrenal nerve activity

1987 ◽  
Vol 253 (3) ◽  
pp. R418-R424 ◽  
Author(s):  
H. Yoshimatsu ◽  
Y. Oomura ◽  
T. Katafuchi ◽  
A. Niijima

Activity changes of efferent adrenal sympathetic nerves in response to bilateral manipulations of the hypothalamus, partly after intra-third cerebroventricular injection of 2-deoxy-D-glucose (2-DG) were investigated in anesthetized rats. Stimulation of the middle part of the lateral hypothalamic area (LHAm) increased adrenal nerve activity, whereas lesion caused rapid and remarkable decrease. Stimulation of the anterior part of the LHA (LHAa) tended to decrease the activity, and lesion produced either rapid decrease or late moderate increase. Stimulation of the ventromedial hypothalamic nucleus (VMH) did not affect the nerve activity, but lesion increased it gradually and then remarkably. Cerebroventricular infusion of 2-DG caused remarkable increase in activity that was suppressed by LHAm lesion. Subsequent infusion of 2-DG during the period of suppressed activity was no longer effective. The increased firing rate after 2-DG was suppressed by stimulation of the VMH, whereas lesion caused no change. These findings indicate that the central regulation of adrenal nerve activity is connected with individual hypothalamic regions and consequently depends on the degree and mode of activation of the sympathoadrenal system.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoko Kato ◽  
Harumi Katsumata ◽  
Ayumu Inutsuka ◽  
Akihiro Yamanaka ◽  
Tatsushi Onaka ◽  
...  

AbstractMultiple sequential actions, performed during parental behaviors, are essential elements of reproduction in mammalian species. We showed that neurons expressing melanin concentrating hormone (MCH) in the lateral hypothalamic area (LHA) are more active in rodents of both sexes when exhibiting parental nursing behavior. Genetic ablation of the LHA-MCH neurons impaired maternal nursing. The post-birth survival rate was lower in pups born to female mice with congenitally ablated MCH neurons under control of tet-off system, exhibiting reduced crouching behavior. Virgin female and male mice with ablated MCH neurons were less interested in pups and maternal care. Chemogenetic and optogenetic stimulation of LHA-MCH neurons induced parental nursing in virgin female and male mice. LHA-MCH GABAergic neurons project fibres to the paraventricular hypothalamic nucleus (PVN) neurons. Optogenetic stimulation of PVN induces nursing crouching behavior along with increasing plasma oxytocin levels. The hypothalamic MCH neural relays play important functional roles in parental nursing behavior in female and male mice.


1996 ◽  
Vol 7 (Supplement 1) ◽  
pp. 22 ◽  
Author(s):  
R CZABAK-GARBACZ ◽  
B CYGAN ◽  
A KRASOWSKI ◽  
I I KOZLOVSKII ◽  
M MAJ

2017 ◽  
pp. 335-344 ◽  
Author(s):  
H. FENG ◽  
Q. WANG ◽  
F. GUO ◽  
X. HAN ◽  
M. PANG ◽  
...  

The present study investigated the effects of nesfatin-1 on gastric distension (GD)-responsive neurons via an interaction with corticotropin-releasing factor (CRF) receptor signaling in the ventromedial hypothalamic nucleus (VMH), and the potential regulation of these effects by hippocampal projections to VMH. Extracellular single-unit discharges were recorded in VHM following administration of nesfatin-1. The projection of nerve fibers and expression of nesfatin-1 were assessed by retrograde tracing and fluoro-immunohistochemical staining, respectively. Results showed that there were GD-responsive neurons in VMH; Nesfatin-1 administration and electrical stimulation of hippocampal CA1 sub-region altered the firing rate of these neurons. These changes could be partially blocked by pretreatment with the non-selective CRF antagonist astressin-B or an antibody to NUCB2/nesfatin-1. Electrolytic lesion of CA1 hippocampus reduced the effects of nesfatin-1 on VMH GD-responsive neuronal activity. These studies suggest that nesfatin-1 plays an important role in GD-responsive neuronal activity through interactions with CRF signaling pathways in VMH. The hippocampus may participate in the modulation of nesfatin-1-mediated effects in VMH.


1997 ◽  
Vol 272 (3) ◽  
pp. R913-R923 ◽  
Author(s):  
H. Morita ◽  
Y. Yamashita ◽  
Y. Nishida ◽  
M. Tokuda ◽  
O. Hatase ◽  
...  

Responses of hepatic afferent nerves to intraportal bolus injection of hypertonic solutions were examined in anesthetized rats. Hepatic afferent nerve activity increased in response to an intraportal injection of 0.75 M NaCl or NaHCO3 but did not respond to a similar injection of 1.5 M mannitol, 0.75 M LiCl, or 0.15 M NaCl, implying that nerves in the hepatoportal area are sensitive to increases in Na concentrations and that this leads to stimulation of hepatic afferent nerve activity. To study central activation in response to stimulation of the hepatic Na-sensitive mechanism, c-fos induction was monitored. After electrical stimulation of hepatic afferent nerves, neurons containing Fos-like immunoreactivity (Fos-li) were found in the area postrema, nucleus of the solitary tract, paraventricular hypothalamic nucleus, and supraoptic nucleus at 90 min after stimulation. Induction of Fos-li was also studied after simultaneous infusion of 0.45 M NaCl into the portal vein and distilled water into the inferior vena cava in conscious rats so as to keep the total amount of solution introduced into the systemic circulation isotonic, thus avoiding changes in mean arterial pressure, plasma osmolality, and plasma NaCl concentrations. Fos-li-containing neurons were found in the same regions in which they were found after electrical stimulation. However, few, if any, Fos-li-containing cells were found if the rats were hepatically denervated or if they received an intraportal infusion of hypertonic LiCl or mannitol. These data provide evidence for involvement of the brain stem and forebrain structures in NaCl regulatory functions induced by stimulation of the hepatoportal Na-sensitive mechanism. However, stimulation of the hepatoportal osmosensitive mechanism does not activate these central structures.


1994 ◽  
Vol 72 (1) ◽  
pp. 89-96 ◽  
Author(s):  
J. A. Thornhill ◽  
I. Halvorson

Experiments were designed to determine in the same animal whether electrical stimulation of the posterior hypothalamus and ventromedial hypothalamic nucleus could specifically evoke shivering and nonshivering (brown adipose tissue) thermogenesis, respectively, in anesthetized, normothermic rats. Urethane-anesthetized, male Long–Evans rats, kept at 37 °C, had colonic (Tc), gastrocnemius muscle (Tm), intrascapular brown adipose tissue (TIBAT), and tail (Tt) temperatures measured via thermistor probes, and electromyogram activity (differential multiunit activity from bipolar recording electrodes within gastrocnemius muscle) recorded, before and after unilateral electrical stimulation (monophasic 0.5-ms pulses of 200 μA at 50 Hz for 30 s) of the posterior hypothalamus and ventromedial hypothalamic nucleus (via stereotaxically implanted concentric stimulating electrodes). Each rat showed shivering (increased electromyogram activity) following posterior hypothalamic stimulation, which caused an immediate rise in Tm values with no change in TIBAT or Tt values. Electrical stimulation of the ventromedial hypothalamic nucleus of the same animals elicited no shivering activity, but significant increases in TIBAT values occurred with no change in Tm or Tt values. Results confirm that stimulation of the posterior and ventromedial hypothalamic nuclei in rodents specifically activates shivering and nonshivering (brown adipose tissue) effector mechanisms, respectively, to raise core temperature.Key words: posterior hypothalamus, shivering thermogenesis, ventromedial hypothalamus, intrascapular brown adipose tissue thermogenesis.


Sign in / Sign up

Export Citation Format

Share Document