Differences in brown adipose tissue thermogenic responses between Long-Evans and Sprague-Dawley rats

1992 ◽  
Vol 263 (1) ◽  
pp. R59-R69
Author(s):  
J. Thornhill ◽  
I. Halvorson

Temperature experiments of 4- and 21 degrees C-acclimated conscious and anesthetized Sprague-Dawley (SD) and Long-Evans (LE) rats revealed that the LE groups or SD rats acclimated to 4 degrees C had significant increases in intracapsular brown adipose tissue (IBAT) temperature above core after ventromedial hypothalamic nucleus (VMH) electrical stimulation or after norepinephrine (NE) infusion (50 micrograms/kg total dose), whereas IBAT temperatures of SD rats (acclimated to 21 degrees C) rose only after intravenous NE. Another study of 21- or 4 degrees C-acclimated SD rats revealed that only the 4 degrees C-acclimated group showed graded increases in IBAT temperature after VMH electrical stimulation as current amplitude or total current duration (not pulse frequency) of the electrical stimulus was increased. In vitro analysis of isolated IBAT tissues of age-matched anesthetized LE or SD rats acclimated to 21 degrees C showed that many indicators of thermogenic capacity including mitochondrial uncoupling protein were significantly lower in the SD group. The results demonstrate that lean male SD rats acclimated to 21 degrees C have suppressed IBAT temperature responses to VMH electrical stimulation compared with lean LE rats due to a reduced thermogenic capacity of that tissue.

2020 ◽  
Author(s):  
Xuemei Liu ◽  
Xiyu Feng ◽  
Chao Deng ◽  
Lu Liu ◽  
Yanping Zeng ◽  
...  

Abstract BackgroundPrescription of second-generation antipsychotic drugs (SGAs) to childhood/adolescent has exponentially increased in recent years, which was associated with the greater risk of significant sedation, weight gain, and dyslipidemia. Statin is considered a potential preventive and treatment approach for reducing SGA-induced weight gain and dyslipidemia in schizophrenia patients. However, the effect of statin treatment in children and adolescents with SGA-induced dyslipidemia is not clearly demonstrated.MethodsTo investigate the efficacy of interventions of statin aimed at reversing SGA-induced dyslipidemia, young Sprague Dawley (SD) rats were treated orally with either olanzapine (1.0 mg/kg, t.i.d.), simvastatin (3.0 mg/kg, t.i.d.), olanzapine plus simvastatin (O+S), or vehicle (control) for 5 weeks.ResultsOlanzapine treatment increased weight gain, food intake and feeding efficiency compared to the control, while O+S co-treatment significantly reversed body weight gain but had no significant effect on food intake. Moreover, olanzapine treatment induced a slight but significant reduction in body temperature, with a decrease in locomotor activity. Fasting plasma glucose, triglycerides (TG), and total cholesterol (TC) levels were markedly elevated in the olanzapine-only group, whereas O+S co-treatment significantly ameliorated these changes. A down-regulating of uncoupling protein-1 (UCP1) and peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α) expression was observed in brown adipose tissue (BAT) in the olanzapine-only group, following a significant decrease in the ratio of phosphorylated PKA (p-PKA)/PKA. Interestingly, these protein changes could be reversed by co-treatment with O+B. Our results demonstrated simvastatin to be effective in ameliorating TC and TG elevated by olanzapine.ConclusionsModulation of BAT activity could be a partial mechanism in reducing metabolic side effects caused by SGAs in child and adolescent patients.


2020 ◽  
Author(s):  
Xuemei Liu ◽  
Xiyu Feng ◽  
Chao Deng ◽  
Lu Liu ◽  
Yanping Zeng ◽  
...  

Abstract Background Prescription of second-generation antipsychotic drugs (SGAs) to childhood/adolescent has exponentially increased in recent years, which was associated with the greater risk of significant weight gain and dyslipidemia. Statin is considered a potential preventive and treatment approach for reducing SGA-induced weight gain and dyslipidemia in schizophrenia patients. However, the effect of statin treatment in children and adolescents with SGA-induced dyslipidemia is not clearly demonstrated.Methods To investigate the efficacy of statin interventions for reversing SGA-induced dyslipidemia, young Sprague Dawley rats were treated orally with either olanzapine (1.0 mg/kg, t.i.d.), simvastatin (3.0 mg/kg, t.i.d.), olanzapine plus simvastatin (O+S), or vehicle (control) for 5 weeks. Results Olanzapine treatment increased weight gain, food intake and feeding efficiency compared to the control, while O+S co-treatment significantly reversed body weight gain but without significant effects on food intake. Moreover, olanzapine treatment induced a slight but significant reduction in body temperature, with a decrease in locomotor activity. Fasting plasma glucose, triglycerides (TG), and total cholesterol (TC) levels were markedly elevated in the olanzapine-only group, whereas O+S co-treatment significantly ameliorated these changes. Pronounced activation of lipogenic gene expression in the liver and down-regulated expression of uncoupling protein-1 (UCP1) and peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α) in brown adipose tissue (BAT) was observed in the olanzapine-only group. Interestingly, these protein changes could be reversed by co-treatment with O+B. Conclusions Simvastatin is effective in ameliorating TC and TG elevated by olanzapine. Modulation of BAT activity by statins could be a partial mechanism in reducing metabolic side effects caused by SGAs in child and adolescent patients.


1994 ◽  
Vol 72 (1) ◽  
pp. 89-96 ◽  
Author(s):  
J. A. Thornhill ◽  
I. Halvorson

Experiments were designed to determine in the same animal whether electrical stimulation of the posterior hypothalamus and ventromedial hypothalamic nucleus could specifically evoke shivering and nonshivering (brown adipose tissue) thermogenesis, respectively, in anesthetized, normothermic rats. Urethane-anesthetized, male Long–Evans rats, kept at 37 °C, had colonic (Tc), gastrocnemius muscle (Tm), intrascapular brown adipose tissue (TIBAT), and tail (Tt) temperatures measured via thermistor probes, and electromyogram activity (differential multiunit activity from bipolar recording electrodes within gastrocnemius muscle) recorded, before and after unilateral electrical stimulation (monophasic 0.5-ms pulses of 200 μA at 50 Hz for 30 s) of the posterior hypothalamus and ventromedial hypothalamic nucleus (via stereotaxically implanted concentric stimulating electrodes). Each rat showed shivering (increased electromyogram activity) following posterior hypothalamic stimulation, which caused an immediate rise in Tm values with no change in TIBAT or Tt values. Electrical stimulation of the ventromedial hypothalamic nucleus of the same animals elicited no shivering activity, but significant increases in TIBAT values occurred with no change in Tm or Tt values. Results confirm that stimulation of the posterior and ventromedial hypothalamic nuclei in rodents specifically activates shivering and nonshivering (brown adipose tissue) effector mechanisms, respectively, to raise core temperature.Key words: posterior hypothalamus, shivering thermogenesis, ventromedial hypothalamus, intrascapular brown adipose tissue thermogenesis.


Author(s):  
Chang-Hyung Lee ◽  
Young-A Choi ◽  
Sung-Jin Heo ◽  
Parkyong Song

Brown adipose tissue (BAT) plays an important role in thermogenic regulation, which contributes to alleviating diet-induced obesity through uncoupling protein 1 (UCP1) expression. While cold exposure and physical exercise are known to increase BAT development and UCP1 expression, the contribution of hyperbaric oxygen (HBO) therapy to BAT maturation remains largely unknown. Here, we show that HBO treatment sufficiently increases BAT volumes and thermogenic protein levels in Sprague-Dawley rats. Through 18F-FDG PET/CT analysis, we found that exposure to high-pressure oxygen (1.5–2.5 ATA) for 7 consecutive days increased radiolabeled glucose uptake and BAT development to an extent comparable to cold exposure. Consistent with BAT maturation, thermogenic protein levels, such as those of UCP1 and peroxisome proliferator-activated receptor γ coactivator 1α (PGC−1α), were largely increased by HBO treatment. Taken together, we suggest HBO therapy as a novel method of inducing BAT development, considering its therapeutic potential for the treatment of metabolic disorders.


2020 ◽  
Author(s):  
Xuemei Liu ◽  
Xiyu Feng ◽  
Chao Deng ◽  
Lu Liu ◽  
Yanping Zeng ◽  
...  

Abstract Background: Prescription of second-generation antipsychotic drugs (SGAs) to childhood/adolescent has exponentially increased in recent years, which was associated with the greater risk of significant weight gain and dyslipidemia. Statin is considered a potential preventive and treatment approach for reducing SGA-induced weight gain and dyslipidemia in schizophrenia patients. However, the effect of statin treatment in children and adolescents with SGA-induced dyslipidemia is not clearly demonstrated. Methods: To investigate the efficacy of statin interventions for reversing SGA-induced dyslipidemia, young Sprague Dawley rats were treated orally with either olanzapine (1.0 mg/kg, t.i.d .), simvastatin (3.0 mg/kg, t.i.d .), olanzapine plus simvastatin (O+S), or vehicle (control) for 5 weeks.Results: Olanzapine treatment increased weight gain, food intake and feeding efficiency compared to the control, while O+S co-treatment significantly reversed body weight gain but without significant effects on food intake. Moreover, olanzapine treatment induced a slight but significant reduction in body temperature, with a decrease in locomotor activity. Fasting plasma glucose, triglycerides (TG), and total cholesterol (TC) levels were markedly elevated in the olanzapine-only group, whereas O+S co-treatment significantly ameliorated these changes. Pronounced activation of lipogenic gene expression in the liver and down-regulated expression of uncoupling protein-1 (UCP1) and peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α) in brown adipose tissue (BAT) was observed in the olanzapine-only group. Interestingly, these protein changes could be reversed by co-treatment with O+B. Conclusions: Simvastatin is effective in ameliorating TC and TG elevated by olanzapine. Modulation of BAT activity by statins could be a partial mechanism in reducing metabolic side effects caused by SGAs in child and adolescent patients.


1992 ◽  
Vol 15 ◽  
pp. 174-175
Author(s):  
L. Clarke ◽  
S. van de Waal ◽  
M. A. Lomax ◽  
M. E. Symonds

In the ovine foetus brown adipose tissue (BAT) is mainly found in the perirenal region and grows rapidly relative to body weight between 70 to 120 days of gestation (Alexander, 1978). After this stage only a small amount of BAT growth occurs in comparison with that of the whole foetus, and in the case of undernutrition may decline (Alexander, 1978). Maternal cold stress, induced by winter shearing twin-bearing pregnant ewes 8 weeks before parturition improves lamb birth weight and lamb growth rate independently of effects on maternal food intake (Symonds, Bryant and Lomax, 1986 and 1990). At the same time this can stimulate the in vivo capacity for non-shivering thermogenesis in newborn lambs (Stott and Slee, 1985). The following study extends these findings by investigating the extent to which changing the maternal metabolic environment influences BAT development over the final month of gestation.Thirty-two Bluefaced Leicester × Swaledale ewes were housed individually at ambient temperature (−6 to 19°C) 6 weeks prior to lambing and 2 weeks later 15 ewes were shorn. Ewes were offered daily a diet comprising 200 g barley concentrate and 1 kg chopped hay. Between 116 and 145 days of gestation and within 2 h of birth ewes were humanely slaughtered with an overdose of barbiturate and foetal or neonatal perirenal BAT sampled, born from shorn or unshorn ewes. The thermogenic capacity of BAT was assessed by guanosine-5′-diphosphate (GDP) binding to uncoupling protein in mitochondrial preparations (Cooper, Dascombe, Rothwell and Vale, 1989) and the amount of mitochondrial protein measured from cytochrome Coxidase activity.


2020 ◽  
Author(s):  
Xuemei Liu ◽  
Xiyu Feng ◽  
Chao Deng ◽  
Lu Liu ◽  
Yanping Zeng ◽  
...  

Abstract Background Prescription of second-generation antipsychotic drugs (SGAs) to childhood/adolescent has exponentially increased in recent years, which was associated with the greater risk of significant weight gain and dyslipidemia. Statin is considered a potential preventive and treatment approach for reducing SGA-induced weight gain and dyslipidemia in schizophrenia patients. However, the effect of statin treatment in children and adolescents with SGA-induced dyslipidemia is not clearly demonstrated. Methods To investigate the efficacy of statin interventions for reversing SGA-induced dyslipidemia, young Sprague Dawley rats were treated orally with either olanzapine (1.0 mg/kg, t.i.d.), simvastatin (3.0 mg/kg, t.i.d.), olanzapine plus simvastatin (O+S), or vehicle (control) for 5 weeks. Results Olanzapine treatment increased weight gain, food intake and feeding efficiency compared to the control, while O+S co-treatment significantly reversed body weight gain but without significant effects on food intake. Moreover, olanzapine treatment induced a slight but significant reduction in body temperature, with a decrease in locomotor activity. Fasting plasma glucose, triglycerides (TG), and total cholesterol (TC) levels were markedly elevated in the olanzapine-only group, whereas O+S co-treatment significantly ameliorated these changes. Pronounced activation of lipogenic gene expression in the liver and down-regulated expression of uncoupling protein-1 (UCP1) and peroxisome-proliferator-activated receptor-γ co-activator-1α (PGC-1α) in brown adipose tissue (BAT) was observed in the olanzapine-only group. Interestingly, these protein changes could be reversed by co-treatment with O+B. Conclusions Simvastatin is effective in ameliorating TC and TG elevated by olanzapine. Modulation of BAT activity could be a partial mechanism in reducing metabolic side effects caused by SGAs in child and adolescent patients.


1995 ◽  
Vol 78 (2) ◽  
pp. 384-387 ◽  
Author(s):  
H. Yamashita ◽  
Y. Ohira ◽  
T. Wakatsuki ◽  
M. Yamamoto ◽  
T. Kizaki ◽  
...  

To study the responses of thermogenic activity in brown adipose tissue (BAT) to unloading, male Wistar rats were hindlimb suspended for 10 days. Compared with control rats, a significant increase in the BAT-to-body mass ratio and considerable differences in chemical components in BAT were observed in the hindlimb-suspended rats. These findings indicate a marked increase in the thermogenic capacity in BAT of the experimental group. Likewise, the thermogenic activity (which was assessed by guanosine 5′-diphosphate binding to BAT mitochondria) was markedly greater in the mitochondria recovered from BAT of the hindlimb-suspended rats than in those from the control rats (1,610 +/- 450 vs. 202 +/- 132 pmol recovered). Moreover, the uncoupling protein content in the BAT mitochondrial fraction of the hindlimb-suspended rats was significantly higher (1.6-fold) than that in the control rats. As was expected, the uncoupling protein mRNA expression was greater in hindlimb-suspended rats than in control animals. These results suggest that chronic hindlimb suspension leads to an increase in both the thermogenic capacity and the activity in BAT of rats.


Sign in / Sign up

Export Citation Format

Share Document