Photoperiodic regulation of gene expression in brown and white adipose tissue of Siberian hamsters (Phodopus sungorus)

2002 ◽  
Vol 282 (1) ◽  
pp. R114-R121 ◽  
Author(s):  
Gregory E. Demas ◽  
Robert R. Bowers ◽  
Timothy J. Bartness ◽  
Thomas W. Gettys

Siberian hamsters exhibit seasonal fluctuations in white adipose tissue (WAT) mass, with peaks in long “summerlike” days (LDs) and nadirs in short “winterlike” days (SDs). These responses can be mimicked in the laboratory after transfer from LDs to SDs. The purpose of the present study was to test whether changes in WAT and brown adipose tissue (BAT) gene expression that are mediated by the sympathetic nervous system in other obesity models are also associated with seasonal adiposity changes in Siberian hamsters. SDs decreased WAT mass and leptin mRNA, increased WAT β3-adrenoceptor mRNA, and induced retroperitoneal WAT uncoupling protein-1 mRNA (the latter measured by RT-PCR, others measured by ribonuclease protection assay) while increasing BAT uncoupling protein-1 and peroxisome proliferator-activated receptor-γ coactivator-1 mRNAs. These effects were not due to SD-induced gonadal regression and largely occurred before the usual SD-induced decreases in food intake. Thus the SD-induced decreased adiposity of Siberian hamsters may be due to a coordinated suite of WAT and BAT gene transcription changes ultimately increasing lipid mobilization and utilization.

2019 ◽  
Vol 51 (09) ◽  
pp. 608-617 ◽  
Author(s):  
Lucia Balagova ◽  
Jan Graban ◽  
Agnesa Puhova ◽  
Daniela Jezova

AbstractCatecholamine effects via β3-adrenergic receptors are important for the metabolism of the adipose tissue. Physical exercise is a core component of antiobesity regimens. We have tested the hypothesis that voluntary wheel running results in enhancement of β3-adrenergic receptor gene expression in the white and brown adipose tissues. The secondary hypothesis is that dietary tryptophan depletion modifies metabolic effects of exercise. Male Sprague-Dawley rats were assigned for sedentary and exercise groups with free access to running wheels for 3 weeks. All animals received normal control diet for 7 days. Both groups were fed either by low tryptophan (0.04%) diet or by control diet (0.2%) for next 2 weeks. The β3-adrenergic receptor mRNA levels in response to running increased in the retroperitoneal and epididymal fat pads. The gene expression of uncoupling protein-1 (UCP-1) was increased in the brown, while unchanged in the white fat tissues. Unlike control animals, the rats fed by low tryptophan diet did not exhibit a reduction of the white adipose tissue mass. Tryptophan depletion resulted in enhanced concentrations of plasma aldosterone and corticosterone, but had no influence on exercise-induced adrenal hypertrophy. No changes in β3-adrenergic receptor and cell proliferation measured by 5-bromo-2′-deoxyuridine incorporation in left heart ventricle were observed. The reduced β3-adrenergic receptor but not enhanced uncoupling protein-1 gene expression supports the hypothesis on hypoactive brown adipose tissue during exercise. Reduction in dietary tryptophan had no major influence on the exercise-induced changes in the metabolic parameters measured.


2020 ◽  
Vol 12 (2) ◽  
pp. 85-101
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: Obesity has been decades become a highly interest study, accompanied by the realization that adipose tissue (AT) plays a major role in the regulation of metabolic function.CONTENT: In past few years, adipocytes classification, development, and differentiation has been significant changes. The white adipose tissue (WAT) can transform to a phenotype like brown adipose (BAT) type and function. Exercise and cold induction were the most common factor for fat browning; however batokines such as fibroblast growth factor (FGF)-21, interleukin (IL)-6, Slit homolog 2 protein (SLIT2)-C, and Meteorin-like protein (METRNL) perform a beneficial browning action by increasing peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α protein levels, a key factor to stimulate mitochondrial biogenesis and uncoupling Protein 1 (UCP1) transcription, thus change the WAT phenotype into beige.SUMMARY: AT recently known as a complex organ, not only bearing a storage function but as well as the master regulator of energy balance and nutritional homeostasis; brown and beige fat express constitutively high levels of thermogenic genes and raise our expectation on new strategies for fighting obesity and metabolic disorders.KEYWORDS: obesity, white adipose tissue, brown adipose tissue, beige adipose tissue, inflammation, IR, metabolic disease


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Hossein Arefanian ◽  
Irina Al-Khairi ◽  
Nermeen Abu Khalaf ◽  
Preethi Cherian ◽  
Sina Kavalakatt ◽  
...  

Abstract Background Angiopoietin-like proteins (ANGPTL), primarily 3, 4, and 8, play a major role in maintaining energy homeostasis by regulating triglyceride metabolism. This study evaluated the level of ANGPTL3, 4, and 8 in the liver, brown adipose tissue (BAT), and subcutaneous white adipose tissue (SAT) of mice maintained under acute and chronic cold conditions. Methods C57BL/6J mice were exposed to cold temperature (4 °C) for 10 days with food provided ad libitum. Animal tissues were harvested at Day 0 (Control group, n = 5) and Days 1, 3, 5, and 10 (cold treatment groups, n = 10 per group). The expression levels of various genes were measured in the liver, SAT, and BAT. ANGPTL3, 4, and 8 expressions were measured in the liver. ANGPTL4, 8, and genes involved in browning and lipid metabolism [uncoupling protein 1 (UCP1), lipoprotein lipase (LPL), and adipose triglyceride lipase (ATGL)] were measured in SAT and BAT. Western blotting (WB) analysis and immunohistochemistry (IHC) were performed to confirm ANGPTL8 expression in these tissues. Results The expressions of ANGPTL3 and 8 mRNA were significantly reduced in mouse liver tissues after cold treatment (P < 0.05); however, the expression of ANGPTL4 was not significantly altered. In BAT, ANGPTL8 expression was unchanged after cold treatment, whereas ANGPTL4 expression was significantly reduced (P < 0.05). ANGPTL4 levels were also significantly reduced in SAT, whereas ANGPTL8 gene expression exhibited over a 5-fold increase. Similarly, UCP1 gene expression was also significantly increased in SAT. The mRNA levels of LPL and ATGL showed an initial increase followed by a gradual decrease with an increase in the days of cold exposure. ANGPTL8 protein overexpression was further confirmed by WB and IHC. Conclusions This study shows that exposure to acute and chronic cold treatment results in the differential expression of ANGPTL proteins in the liver and adipose tissues (SAT and BAT). The results show a significant reduction in ANGPTL4 in BAT, which is linked to improved thermogenesis in response to acute cold exposure. ANGPTL8 was activated under acute and chronic cold conditions in SAT, suggesting that it is involved in regulating lipolysis and enhancing SAT browning.


1998 ◽  
Vol 157 (2) ◽  
pp. 237-243 ◽  
Author(s):  
MV Kumar ◽  
PJ Scarpace

All-trans-retinoic acid (RA), one of the active metabolites of vitamin A, can increase the expression of uncoupling protein-1 (UCP1) gene. To determine whether RA stimulates brown adipose tissue (BAT) thermogenesis and modulates leptin gene expression in vivo, 6-month-old, vitamin-A sufficient, F344 x BN rats were administered a single dose of RA (7.5 mg/kg, i.p.) or the beta 3-adrenergic receptor (beta 3AR) specific agonist, CGP 12177 (0.75 mg/kg). Levels of UCP1 mRNA in BAT and leptin mRNA in perirenal white adipose tissue (WAT) were examined 5 h after treatment. mRNA levels of lipoprotein lipase (LPL) were also examined in BAT and perirenal WAT. Administration of CGP 12177 caused the expected increase in UCP1 mRNA levels. RA treatment also significantly increased UCP1 mRNA levels but to a lesser extent than CGP 12177. In contrast, there was no acute effect of RA on whole body oxygen consumption, one measure of BAT thermogenesis. Both CGP 12177 and RA treatment decreased levels of leptin mRNA to a similar extent. RA treatment had no effect on mRNA levels of LPL in BAT or perirenal WAT. There were no changes in total DNA content, total protein content, or in the levels of beta-actin mRNA in either BAT or perirenal WAT upon administration of RA or CGP 12177. Thus, the acute effects of RA paralleled the effects of the beta 3AR specific agonist, CGP 12177, on UCP1 and leptin gene expression. This involvement of RA in positive regulation of UCP1 mRNA and negative regulation of leptin mRNA suggests a contrasting role for RA in energy homeostasis.


Endocrinology ◽  
2001 ◽  
Vol 142 (3) ◽  
pp. 1269-1277 ◽  
Author(s):  
James M. Way ◽  
W. Wallace Harrington ◽  
Kathleen K. Brown ◽  
William K. Gottschalk ◽  
Scott S. Sundseth ◽  
...  

Abstract Peroxisome proliferator-activated receptor γ (PPARγ) agonists, including the glitazone class of drugs, are insulin sensitizers that reduce glucose and lipid levels in patients with type 2 diabetes mellitus. To more fully understand the molecular mechanisms underlying their therapeutic actions, we have characterized the effects of the potent, tyrosine-based PPARγ ligand GW1929 on serum glucose and lipid parameters and gene expression in Zucker diabetic fatty rats. In time-course studies, GW1929 treatment decreased circulating FFA levels before reducing glucose and triglyceride levels. We used a comprehensive and unbiased messenger RNA profiling technique to identify genes regulated either directly or indirectly by PPARγ in epididymal white adipose tissue, interscapular brown adipose tissue, liver, and soleus skeletal muscle. PPARγ activation stimulated the expression of a large number of genes involved in lipogenesis and fatty acid metabolism in both white adipose tissue and brown adipose tissue. In muscle, PPARγ agonist treatment decreased the expression of pyruvate dehydrogenase kinase 4, which represses oxidative glucose metabolism, and also decreased the expression of genes involved in fatty acid transport and oxidation. These changes suggest a molecular basis for PPARγ-mediated increases in glucose utilization in muscle. In liver, PPARγ activation coordinately decreased the expression of genes involved in gluconeogenesis. We conclude from these studies that the antidiabetic actions of PPARγ agonists are probably the consequence of 1) their effects on FFA levels, and 2), their coordinate effects on gene expression in multiple insulin-sensitive tissues.


2008 ◽  
Vol 28 (7) ◽  
pp. 2187-2200 ◽  
Author(s):  
Haibo Wang ◽  
Yuan Zhang ◽  
Einav Yehuda-Shnaidman ◽  
Alexander V. Medvedev ◽  
Naresh Kumar ◽  
...  

ABSTRACT The adipocyte integrates crucial information about metabolic needs in order to balance energy intake, storage, and expenditure. Whereas white adipose tissue stores energy, brown adipose tissue is a major site of energy dissipation through adaptive thermogenesis mediated by uncoupling protein 1 (UCP1) in mammals. In both white and brown adipose tissue, nuclear receptors and their coregulators, such as peroxisome proliferator-activated receptor γ (PPARγ) and PPARγ coactivator 1α (PGC-1α), play key roles in regulating their development and metabolic functions. Here we show the unexpected role of liver X receptor α (LXRα) as a direct transcriptional inhibitor of β-adrenergic receptor-mediated, cyclic AMP-dependent Ucp1 gene expression through its binding to the critical enhancer region of the Ucp1 promoter. The mechanism of inhibition involves the differential recruitment of the corepressor RIP140 to an LXRα binding site that overlaps with the PPARγ/PGC-1α response element, resulting in the dismissal of PPARγ. The ability of LXRα to dampen energy expenditure in this way provides another mechanism for maintaining a balance between energy storage and utilization.


Sign in / Sign up

Export Citation Format

Share Document