NMR-Based Serum and Urine Metabolomic Profile Reveals Suppression of Mitochondrial Pathways in Experimental Sepsis-Associated Acute Kidney Injury

Author(s):  
Stephen Wade Standage ◽  
Shenyuan Xu ◽  
Lauren Brown ◽  
Qing Ma ◽  
Adeleine Koterba ◽  
...  

Sepsis-associated acute kidney injury (SA-AKI) is a significant problem in the critically ill that causes increased death. Emerging understanding of this disease implicates metabolic dysfunction in its pathophysiology. This study sought to identify specific metabolic pathways amenable to potential therapeutic intervention. Using a murine model of sepsis, blood and tissue samples were collected for assessment of systemic inflammation, kidney function, and renal injury. Nuclear magnetic resonance (NMR)-based metabolomics quantified dozens of metabolites in serum and urine which were subsequently submitted to pathway analysis. Kidney tissue gene expression analysis confirmed implicated pathways. Septic mice had elevated circulating levels of inflammatory cytokines and increased levels of blood urea nitrogen and creatinine, indicating both systemic inflammation and poor kidney function. Renal tissue showed only mild histologic evidence of injury in sepsis. NMR metabolomic analysis identified the involvement of mitochondrial pathways associated with branched-chain amino acid (BCAA) metabolism, fatty acid oxidation, and de novo nicotinamide adenine dinucleotide (NAD+) biosynthesis in SA-AKI. Renal cortical gene expression of enzymes associated with those pathways was predominantly suppressed. Similar to humans, septic mice demonstrate renal dysfunction without significant tissue disruption, pointing to metabolic derangement as an important contributor to SA-AKI pathophysiology. Metabolism of BCAAs and fatty acids and NAD+ synthesis, which all center on mitochondrial function, appear to be suppressed. Developing interventions to activate these pathways may provide new therapeutic opportunities for SA-AKI.

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Qiuyue Ma ◽  
Viviane Gnemmi ◽  
Anders Hans-Joachim ◽  
Stefanie Steiger

Abstract Background and Aims Acute kidney injury (AKI) and disease (AKD) are major causes of morbidity and mortality worldwide. Hyperuricemia (HU) is common in patients with impaired kidney function. While there is no doubt that crystalline uric acid (UA) causes acute and chronic UA nephropathy, urolithiasis and kidney stone disease, the pathogenesis of asymptomatic HU in AKI/AKD is incompletely understood. In animal studies, elevated serum UA levels may lead to endothelial dysfunction, renin-angiotensin system activation and oxidative stress. However, such models do not mimic human HU. To overcome this issue, we established a model of AKI/AKD with clinically relevant serum UA levels and hypothesized that asymptomatic HU improves the outcomes after AKI/AKD by restoring metabolic activity and mitochondrial biogenesis in macrophages and tubular epithelial cells. Method Alb-creERT2;Glut9lox/lox and Glut9lox/lox control mice were injected with tamoxifen and placed on a chow diet enriched with inosine. Hyperuricemic mice (serum UA ≥7 mg/dL) and mice without HU (serum UA 4-5 mg/dL) underwent uninephrectomy followed by unilateral ischemia-reperfusion (IR) to induce AKI/AKD. Serum and kidneys were collected on day 3 and 14 after AKI/AKD, and kidney function, tubular injury, inflammation, mitochondrial dysfunction, metabolic activity (fatty acid oxidation) and macrophage infiltration were quantified using GFR measurement, immunohistochemistry, colorimetric assays, electron microscopy, RT-PCR and flow cytometry. Results We observed an increase in serum UA levels from 7 to 10 mg/dL in hyperuricemic mice on day 3 after IR-induced AKI/AKD that returned to 7 mg/dL after 14 days (Figure left). While there was no difference in GFR between hyperuricemic and mice without HU with AKI/AKD on day 3, we found an improved kidney function in hyperuricemic mice on day 14 (Figure middle). This was associated with significantly less tubular injury and inflammation as well as an increase in the number of infiltrating anti-inflammatory M2-like macrophages as compared to mice without HU. Intrarenal mRNA expression level of the pro-oxidant heme-oxygenase-1 was reduced in hyperuricemic mice. However, the expression of anti-oxidant enzymes (Nrf-1 and Sod) and metabolic genes associated with fatty acid oxidation (Cpt1, Pparg, and Pgc1b) significantly increased as compared to mice without HU 14 days after AKI/AKD. In addition, HU increased the number of phospho-Histone-3 and intact proximal tubules and restored tubular mitochondrial morphology as indicated by an increased mitochondrial aspect ratio (Figure right). Conclusion Our data imply that asymptomatic HU improves kidney outcomes after IR-induced AKI/AKD because HU attenuates tubular injury and inflammation. In addition, we found that HU enhances the metabolic activity and anti-inflammatory M2-like macrophage polarization as well as restores mitochondrial biogenesis in tubular epithelial cells, suggesting that HU acts as antioxidant by improving kidney recovery after AKI/AKD.


2020 ◽  
Author(s):  
Yanlei Zheng ◽  
Ronghua Hu ◽  
Li Zhang

Abstract BackgroundInflammation and apoptosis contribute to the development of sepsis-induced acute kidney injury. Annexin A1 (ANXA1) is the calcium-dependent phospholipid-binding protein known to play an important role in a variety of cellular functions, including inflammation, apoptosis, migration and proliferation. However, the effect of ANXA1 on sepsis-induced acute injury has not been reported. Herein, we investigated the role and underlying mechanism of the mimetic peptide Ac2-26 of annexin A1 in sepsis-induce acute kidney injury in vivo and in vitro.MethodsIn vivo, a mouse model was established by cecal ligation and puncture (CLP), and the Ac2-26 peptide of ANXA1 (1 mg/kg) was intraperitoneally administered 2 hours before CLP. In vitro, A model of HK-2 cells was established by treatment with 10 μg/ml lipopolysaccharide (LPS), and the Ac2-26 peptide of ANXA1 (0.5 μmol/L) was administered 2 hours before LPS. The kidney function of mice detected by Elisa. The kidney tissue was examined by HE and TEM. The inflammatory cytokines and apoptotic molecules were measured by PCR, Elisa, Western blotting and Immunohistochemistry. The apoptosis was detected by TUNEL and flow cytometry.ResultsThe studies demonstrated that ANXA1 markedly improved kidney function and kidney tissue injury and enhanced 7-day survival in CLP-induced septic mice, which was accompanied by a significant decrease the inflammatory molecules. ANXA1 obviously downregulated the apoptosis-associated proteins and inhibited apoptosis in kidney tissue in vivo. In vitro studies showed that ANXA1 increased the viability of HK-2 cells, reduced the levels of the inflammatory molecules, downregulated the apoptosis-associated proteins Bax, upregulated the antiapoptotic protein Bcl-2 and inhibited the apoptosis of HK-2 cells.ConclusionsThe mimetic peptide Ac2-26 of annexin A1 protects against sepsis-induced inflammation, apoptosis, and kidney dysfunction via regulating the LXA4/PI3K/IKK-β/NF-κB signaling pathway.


2020 ◽  
Vol 245 (16) ◽  
pp. 1474-1489
Author(s):  
Chandrashekar Annamalai ◽  
Rajesh N Ganesh ◽  
Pragasam Viswanathan

Acute kidney injury causes significant morbidity and mortality. This experimental animal study investigated the simultaneous impact of iron and vitamin D on acute kidney injury induced by iohexol, an iodinated, non-ionic monomeric radiocontrast agent in Wistar rats. Out of 36 healthy male Wistar rats, saline was injected into six control rats (group 1) and iohexol into the remaining 30 experimental rats (groups 2 to 6 comprising six rats each). Biochemical, renal histological changes, and gene expression of iron-regulating proteins and 1 α-hydroxylase were analyzed. Urinary neutrophil gelatinase-associated lipocalin (NGAL), serum creatinine, urine protein, serum and urine catalytic iron, 25-hydroxyvitamin D3, 1,25-dihydroxyvitamin D3, and tissue lipid peroxidation were assayed. Rats injected with iohexol showed elevated urinary NGAL (11.94 ± 6.79 ng/mL), serum creatinine (2.92 ± 0.91 mg/dL), and urinary protein levels (11.03 ± 9.68 mg/mg creatinine) together with histological evidence of tubular injury and iron accumulation. Gene expression of iron-regulating proteins and 1 α-hydroxylase was altered. Serum and urine catalytic iron levels were elevated (0.57 ± 0.17; 48.95 ± 29.13 µmol/L) compared to controls (0.49 ± 0.04; 20.7 ± 2.62 µmol/L, P < 0.001). Urine catalytic iron positively correlated with tissue peroxidation (r = 0.469, CI 0.122 to 0.667, P = 0.004) and urinary NGAL (r = 0.788, CI 0.620 to 0.887, P < 0.001). 25-hydroxyvitamin D3 (61.58 ± 9.60 ng/mL) and 1,25-dihydroxyvitamin D3 (50.44 ± 19.76 pg/mL) levels increased simultaneously. In a multivariate linear regression analysis, serum iron, urine catalytic iron, and tissue lipid peroxidation independently and positively predicted urinary NGAL, an acute kidney injury biomarker. This study highlights the nephrotoxic potential of catalytic iron besides demonstrating a concurrent induction of vitamin D endogenously for possible renoprotection in acute kidney injury. Impact statement This work provides in-depth insights on catalytic iron-induced cytotoxicity and the resultant triggering of endogenous vitamin D synthesis in experimental acute kidney injury. Our results reveal significantly elevated levels of catalytic iron culminating in oxidant-mediated renal injury and a concomitant increase in 1,25-dihdyroxyvitamin D3 levels. Also, changes in other iron-related proteins including transferrin, ferritin, and hepcidin were observed both in the serum as well as in their mRNA expression. We consider all these findings vital since no connection between catalytic iron and vitamin D has been established so far. Furthermore, we believe that this work provides new and interesting results, with catalytic iron emerging as an important target in ameliorating renal cellular injury, possibly by timely administration of vitamin D. It also needs to be seen if these observations made in rats could be translated to humans by means of robust clinical trials.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Milan Ivanov ◽  
Zoran Miloradovic ◽  
Nevena Mihailovic-Stanojevic ◽  
Djurdjica Jovovic ◽  
Danijela Karanovic ◽  
...  

Abstract Background and Aims Renal ischemia–reperfusion (RIR) injury is one of the factors in the development of acute kidney injury (AKI). AKI is multifactorially caused, but the mechanism of pathogenesis and development of this disease is still incompletely defined. AKI is characterized by the sudden appearance, rapid progression of disease and very uncertain and often fatal outcome. Heme oxygenase-1 (HO-1) is a cytoprotective enzyme that catalyzes the breakdown of heme to biliverdin, carbon monoxide, and iron. HO-1 is now recognized as a protection factor in acute kidney injury. The aim of this study was to determine the effect of preconditioning with hyperbaric oxygen (HBO) on HO-1 expression in kidney tissue and kidney function in spontaneously hypertensive rats (SHR) during kidney ischemia–reperfusion injury. Method An experiment was performed in anesthetized, adult six-month-old male SHR. The right kidney was removed and the renal ischemia was performed by clamping the left renal artery for 40 minutes. SHR were randomly selected in three experimental groups: sham operated group (SHAM; n=7); AKI control group (AKI; n=9); and AKI group with HBO (AKI+HBO; n=9). Treated group were placed into experimental HBO chambers and exposed to pure oxygen, twice a day (in a 12 hour period, 8AM and 8 PM) for two consecutive days in the following manner: 10 minutes slow compression, 2.026 bar for 60 minutes, 10 minutes slow decompression. Mean arterial pressure (MAP) and HO-1 expression in kidney tissue were measured 24h after reperfusion. Clearance of creatinine (CCr), urea (CUr) and phosphate (CPh) were calculated 24h after reperfusion. Results After AKI induction reduction of blood pressure was recorded in both groups with AKI. Preconditioning with HBO significantly improved kidney function in rats with AKI compared to control group. HO-1 expression in kidney tissue was significantly higher in the treated group (p&lt;0,01) compared to SHAM and AKI control group. Conclusion Our results suggest that HBO treatment improves kidney function in the AKI+HBO vs. AKI control group. This implies that increased level of HO-1 due to preconditioning with hyperbaric oxygen may have beneficial effects on kidney function, and potentially protective effect in an ischemic model of AKI with hypertension.


2012 ◽  
Vol 303 (3) ◽  
pp. F437-F448 ◽  
Author(s):  
Shenyang Li ◽  
Kiran Nagothu ◽  
Gouri Ranganathan ◽  
Syed M. Ali ◽  
Brian Shank ◽  
...  

Peroxisome proliferator-activated receptor-α (PPARα) activation attenuates cisplatin (CP)-mediated acute kidney injury by increasing fatty acid oxidation, but mechanisms leading to reduced renal triglyceride (TG) accumulation could also contribute. Here, we investigated the effects of PPARα and CP on expression and enzyme activity of kidney lipoprotein lipase (LPL) as well as on expression of angiopoietin protein-like 4 (Angptl4), glycosylphosphatidylinositol-anchored-HDL-binding protein (GPIHBP1), and lipase maturation factor 1 (Lmf1), which are recognized as important proteins that modulate LPL activity. CP caused a 40% reduction in epididymal white adipose tissue (WAT) mass, with a reduction of LPL expression and activity. CP also reduced kidney LPL expression and activity. Angptl4 mRNA levels were increased by ninefold in liver and kidney tissue and by twofold in adipose tissue of CP-treated mice. Western blots of two-dimensional gel electrophoresis identified increased expression of a neutral pI Angptl4 protein in kidney tissue of CP-treated mice. Immunolocalization studies showed reduced staining of LPL and increased staining of Angptl4 primarily in proximal tubules of CP-treated mice. CP also increased TG accumulation in kidney tissue, which was ameliorated by PPARα ligand. In summary, a PPARα ligand ameliorates CP-mediated nephrotoxicity by increasing LPL activity via increased expression of GPHBP1 and Lmf1 and by reducing expression of Angptl4 protein in the proximal tubule.


2021 ◽  
Vol 8 ◽  
pp. 205435812110180
Author(s):  
Orit Kliuk-Ben Bassat ◽  
Sapir Sadon ◽  
Svetlana Sirota ◽  
Arie Steinvil ◽  
Maayan Konigstein ◽  
...  

Background: Transcatheter aortic valve replacement (TAVR), although associated with an increased risk for acute kidney injury (AKI), may also result in improvement in renal function. Objective: The aim of this study is to evaluate the magnitude of kidney function improvement (KFI) after TAVR and to assess its significance on long-term mortality. Design: This is a prospective single center study. Setting: The study was conducted in cardiology department, interventional unit, in a tertiary hospital. Patients: The cohort included 1321 patients who underwent TAVR. Measurements: Serum creatinine level was measured at baseline, before the procedure, and over the next 7 days or until discharge. Methods: Kidney function improvement was defined as the mirror image of AKI, a reduction in pre-procedural to post-procedural minimal creatinine of more than 0.3 mg/dL, or a ratio of post-procedural minimal creatinine to pre-procedural creatinine of less than 0.66, up to 7 days after the procedure. Patients were categorized and compared for clinical endpoints according to post-procedural renal function change into 3 groups: KFI, AKI, or preserved kidney function (PKF). The primary endpoint was long-term all-cause mortality. Results: The incidence of KFI was 5%. In 55 out of 66 patients patients, the improvement in kidney function was minor and of unclear clinical significance. Acute kidney injury occurred in 19.1%. Estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 was a predictor of KFI after multivariable analysis (odds ratio = 0.93 to develop KFI; confidence interval [95% CI]: 0.91-0.95, P < .001). Patients in the KFI group had a higher Society of Thoracic Surgery (STS) score than other groups. Mortality rate did not differ between KFI group and PKF group (43.9% in KFI group and 33.8% in PKF group) but was significantly higher in the AKI group (60.7%, P < .001). Limitations: The following are the limitations: heterozygous definitions of KFI within different studies and a single center study. Although data were collected prospectively, analysis plan was defined after data collection. Conclusions: Improvement in kidney function following TAVR was not a common phenomenon in our cohort and did not reduce overall mortality rate.


Author(s):  
Ravindra Attur Prabhu ◽  
Tushar Shaw ◽  
Indu Ramachandra Rao ◽  
Vandana Kalwaje Eshwara ◽  
Shankar Prasad Nagaraju ◽  
...  

Abstract Background Melioidosis is a potentially fatal tropical infection caused by Burkholderia pseudomallei. Kidney involvement is possible, but has not been well described. Aim This study aimed to assess the risk of acute kidney injury (AKI) and its outcomes in melioidosis. Methods A retrospective observational cohort study was performed. Case records of consecutive patients with culture-confirmed melioidosis, observed from January 1st, 2012 through December 31st, 2019 were analysed for demographics, presence of comorbidities, including chronic kidney disease (CKD), diabetes mellitus (DM), and presence of bacteraemia, sepsis, shock, AKI, and urinary abnormalities. The outcomes we studied were: mortality, need for hospitalisation in an intensive care unit (ICU), duration of hospitalization. We then compared the outcomes between patients with and without AKI. Results Of 164 patients, AKI was observed in 59 (35.98%), and haemodialysis was required in eight (13.56%). In the univariate analysis, AKI was associated with CKD (OR 5.83; CI 1.140–29.90, P = 0.03), bacteraemia (OR 8.82; CI 3.67–21.22, P < 0.001) and shock (OR 3.75; CI 1.63–8.65, P = 0.04). In the multivariate analysis, CKD (adjusted OR 10.68; 95% CI 1.66–68.77; P = 0.013) and bacteraemia (adjusted OR 8.22; 95% CI 3.15–21.47, P < 0.001) predicted AKI. AKI was associated with a greater need for ICU care (37.3% vs. 13.3%, P = 0.001), and mortality (32.2% vs. 5.7%, P < 0.001). Mortality increased with increasing AKI stage, i.e. stage 1 (OR 3.52, CI 0.9–13.7, P = 0.07), stage 2 (OR 6.79, CI 1.92–24, P = 0.002) and stage 3 (OR 17.8, CI 5.05–62.8, P < 0.001), however kidney function recovered in survivors. Hyponatremia was observed in 138 patients (84.15%) and isolated urinary abnormalities were seen in 31(18.9%). Conclusions AKI is frequent in melioidosis and occurred in 35.9% of our cases. Hyponatremia is likewise common. AKI was predicted by bacteraemia and CKD, and was associated with higher mortality and need for ICU care; however kidney function recovery was observed in survivors. Graphic abstract


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Sara Núñez Delgado ◽  
Miren Iriarte-Abril ◽  
Júlia Farrera-Núñez ◽  
Sergi Pascual-Sánchez ◽  
Laia Sans-Atxer ◽  
...  

Abstract Background and Aims Acute renal failure (AKI) associated to rhabdomyolysis conditions a worse prognosis in short-term, its implication in the long-term renal function has been less evaluated. Method Retrospective analysis of patients diagnosed with rhabdomyolysis defined by creatinine kinase &gt; 5000 IU/L between 2015-2019. Basal and 12-month renal function was evaluated. AKI was classified as either non-severe (AKI-KDIGO 1/2) or severe (AKI-KDIGO 3). Results Eighty-seven patients were included, 25 (28.74%) had some degree of chronic kidney disease (CKD) on admission. 56 (64.37%) had AKI on admission, 17 of which were severe (6 required hemodialysis). The patients with AKI had more cardiovascular disease (CVD) and worse analytical parameters on admission (table). Patients with severe AKI showed no difference in CVD from those with non-severe AKI but were younger and had more hyperkalemia. There were no significant differences between patients with severe AKI who required hemodialysis and those who did not. Inpatient mortality was 8%, higher in patients with AKI but without differences according to severity. In 45 patients kidney function was available 12 months after the episode, loss of eGF was -4.90 ± 14.35 ml/min-1.73m2 (p=0.007). There was no difference between patients who developed AKI and those who did not (-4.10 ± 14.4 vs. -5.39 ± 14.57 ml/min-1.73m2; p=0.67), nor between non-severe and severe AKI (-5.50 ± 14.76 vs. -5.12 ± 15.08ml/min-1.73m2; p=0.98). Of the 33 patients without previous CKD, 5 developed CKD, with greater decrease in eGF than those who did not (-22.69 ± 6.04 vs. -2.63 ± 13.92 ml/min-1.73m2; p=0.003). Female sex (60% vs. 12%; p=0.031) and previous basal eGF (72.22 ± 4.37 vs. 95.6±19.97 ml/min-1.72m2; p=0.016) were related to this deterioration. Conclusion After an episode of rhabdomyolysis, the loss of eGF is similar in patients who develop AKI compared to those who do not.


Sign in / Sign up

Export Citation Format

Share Document