Disruption of cyclooxygenase-2 prevents downregulation of cortical AQP2 and AQP3 in response to bilateral ureteral obstruction in the mouse

2012 ◽  
Vol 302 (11) ◽  
pp. F1430-F1439 ◽  
Author(s):  
Line Nilsson ◽  
Kirsten Madsen ◽  
Sukru Oguzkan Topcu ◽  
Boye L. Jensen ◽  
Jørgen Frøkiær ◽  
...  

Bilateral ureteral obstruction (BUO) in rats is associated with increased cyclooxygenase type 2 (COX-2) expression, and selective COX-2 inhibition prevents downregulation of aquaporins (AQPs) in response to BUO. It was hypothesized that a murine model would display similar changes in renal COX-2 and AQPs upon BUO and that targeted disruption of COX-2 protects against BUO-induced suppression of collecting duct AQPs. COX-2−/− and wild-type littermates (C57BL/6) were employed to determine COX-1, -2, AQP2, and AQP3 protein abundances and localization after BUO. In a separate series, sham and BUO wild-type mice were treated with a selective COX-2 inhibitor, parecoxib. The COX-2 protein level increased in wild-type mice in response to BUO and was not detectable in COX-2−/−. COX-1 protein abundance was increased in sham-operated and BUO mice. Total AQP2 and -3 mRNA and protein levels decreased significantly after BUO in the cortex+outer medulla (C+OM) and inner medulla (IM). The decrease in C+OM AQP2 and -3 levels was attenuated/prevented in COX-2−/− mice, whereas there was no change in the IM. In parallel, inhibition of COX-2 by parecoxib rescued C+OM AQP3 and IM AQP2 protein level in wild-type mice subjected to BUO. In summary, 1) In C57BL/6 mice, ureteral obstruction increases renal COX-2 expression in interstitial cells and lowers AQP2/-3 abundance and 2) inhibition of COX-2 activity by targeted disruption or pharmacological blockade attenuates obstruction-induced AQP downregulation. In conclusion, COX-2-derived prostaglandins contribute to downregulation of transcellular water transporters in the collecting duct and likely to postobstruction diureses in the mouse.

2010 ◽  
Vol 299 (3) ◽  
pp. R823-R831 ◽  
Author(s):  
Inge Carlsen ◽  
Kaitlin E. Donohue ◽  
Anja M. Jensen ◽  
Angela L. Selzer ◽  
Jie Chen ◽  
...  

Renal medullary interstitial cells (RMICs) are subjected to osmotic, inflammatory, and mechanical stress as a result of ureteral obstruction, which may influence the expression and activity of cyclooxygenase type 2 (COX-2). Inflammatory stress strongly induces COX-2 in RMICs. To explore the direct effect of mechanical stress on the expression and activity of COX-2, cultured RMICs were subjected to varying amounts of pressure over time using a novel pressure apparatus. COX-2 mRNA and protein were induced following 60 mmHg pressure for 4 and 6 h, respectively. COX-1 mRNA and protein levels were unchanged. PGE2production in the RMICs was increased when cells were subjected to 60 mmHg pressure for 6 h and was prevented by a selective COX-2 inhibitor. Pharmacological inhibition indicating that pressure-induced COX-2 expression is dependent on p38 MAPK and biochemical knockdown experiments showed that NF-κB might be involved in the COX-2 induction by pressure. Importantly, terminal deoxyneucleotidyl transferase-mediated dUTP nick-end labeling and methylthiazoletetetrazolium assay studies showed that subjecting RMICs to 60 mmHg pressure for 6 h does not affect cell viability, apoptosis, and proliferation. To further examine the regulation of COX-2 in vivo, rats were subjected to unilateral ureteral obstruction (UUO) for 6 and 12 h. COX-2 mRNA and protein level was increased in inner medulla in response to 6- and 12-h UUO. COX-1 mRNA and protein levels were unchanged. These findings suggest that in vitro application of pressure recapitulates the effects on RMICs found after in vivo UUO. This directly implicates pressure as an important regulator of renal COX-2 expression.


1998 ◽  
Vol 274 (3) ◽  
pp. F481-F489 ◽  
Author(s):  
Tianxin Yang ◽  
Inderjit Singh ◽  
Hang Pham ◽  
Daqing Sun ◽  
Ann Smart ◽  
...  

The present studies were undertaken to determine the effect of dietary salt intake on the renal expression of cyclooxygenase-1 (COX-1) and -2 (COX-2). Protein levels were assessed by Western blotting, and mRNA expression was assessed by reverse transcription-polymerase chain reaction (RT-PCR) on cDNA prepared from kidney regions, dissected nephron segments, and cultured renal cells. Both isoforms were expressed at high levels in inner medulla (IM), with low levels detected in outer medulla and cortex. COX-1 mRNA was present in the glomerulus and all along the collecting duct, whereas COX-2 mRNA was restricted to the macula densa-containing segment (MD), cortical thick ascending limb (CTAL), and, at significantly lower levels, in the inner medullary collecting duct. Both isoforms were highly expressed at high levels in cultured medullary interstitial cells and at lower levels in primary mesangial cells and collecting duct cell lines. Maintaining rats on a low- or high-NaCl diet for 1 wk did not affect expression of COX-1. In IM of rats treated with a high-salt diet, COX-2 mRNA increased 4.5-fold, and protein levels increased 9.5-fold. In contrast, cortical COX-2 mRNA levels decreased 2.9-fold in rats on a high-salt diet and increased 3.3-fold in rats on a low-salt diet. A low-salt diet increased COX-2 mRNA 7.7-fold in MD and 3.3-fold in CTAL. Divergent regulation of COX-2 in cortex and medulla by dietary salt suggests that prostaglandins in different kidney regions serve different functions, with medullary production playing a role in promoting the excretion of salt and water in volume overload, whereas cortical prostaglandins may protect glomerular circulation in volume depletion.


2007 ◽  
Vol 292 (5) ◽  
pp. F1322-F1333 ◽  
Author(s):  
Rikke Nørregaard ◽  
Boye L. Jensen ◽  
Sukru Oguzkan Topcu ◽  
Maria Diget ◽  
Horst Schweer ◽  
...  

Release of bilateral ureteral obstruction (BUO) is associated with reduced expression of renal aquaporins (AQPs), polyuria, and impairment of urine-concentrating capacity. Recently, we demonstrated that 24 h of BUO is associated with increased cyclooxygenase (COX)-2 expression in the inner medulla (IM) and that selective COX-2 inhibition prevents downregulation of AQP2. In the present study, we tested the hypothesis that COX-2 activity increases in the postobstructive phase and that this increase in COX-2 activity contributes to polyuria and impaired urine-concentrating capacity. We examined the effect of the selective COX-2 inhibitor parecoxib (5 mg·kg−1·day−1 via osmotic minipumps) on renal functions and protein abundance of AQP2, AQP3, Na-K-2Cl cotransporter type 2 (NKCC2), and Na-K-ATPase 3 days after release of BUO. At 3 days after release of BUO, rats exhibited polyuria, dehydration and urine and IM tissue osmolality were decreased. There were inverse changes of COX-1 and COX-2 in the IM: COX-2 mRNA, protein, and activity increased, while COX-1 mRNA and protein decreased. Parecoxib reduced urine output 1 day after release of BUO, but sodium excretion and glomerular filtration rate were unchanged. Parecoxib normalized urinary PGE2 and PGI2 excretion and attenuated downregulation of AQP2 and AQP3, while phosphorylated AQP2 and NKCC2 remained suppressed. Parecoxib did not improve urine-concentrating capacity in response to 24 h of water deprivation. We conclude that decreased NKCC2 and collapse of the IM osmotic gradient, together with suppressed phosphorylated AQP2, are likely causes for the impaired urine-concentrating capacity and that COX-2 activity is not likely to mediate these changes in the chronic postobstructive phase after ureteral obstruction.


2013 ◽  
Vol 304 (5) ◽  
pp. F522-F532 ◽  
Author(s):  
Luca Vedovelli ◽  
John T. Rothermel ◽  
Karin E. Finberg ◽  
Carsten A. Wagner ◽  
Anie Azroyan ◽  
...  

Unlike human patients with mutations in the 56-kDa B1 subunit isoform of the vacuolar proton-pumping ATPase (V-ATPase), B1-deficient mice (Atp6v1b1−/−) do not develop metabolic acidosis under baseline conditions. This is due to the insertion of V-ATPases containing the alternative B2 subunit isoform into the apical membrane of renal medullary collecting duct intercalated cells (ICs). We previously reported that quantitative Western blots (WBs) from whole kidneys showed similar B2 protein levels in Atp6v1b1−/− and wild-type mice (Păunescu TG, Russo LM, Da Silva N, Kovacikova J, Mohebbi N, Van Hoek AN, McKee M, Wagner CA, Breton S, Brown D. Am J Physiol Renal Physiol 293: F1915–F1926, 2007). However, WBs from renal medulla (including outer and inner medulla) membrane and cytosol fractions reveal a decrease in the levels of the ubiquitous V-ATPase E1 subunit. To compare V-ATPase expression specifically in ICs from wild-type and Atp6v1b1−/− mice, we crossed mice in which EGFP expression is driven by the B1 subunit promoter (EGFP-B1+/+ mice) with Atp6v1b1−/− mice to generate novel EGFP-B1−/− mice. We isolated pure IC populations by fluorescence-assisted cell sorting from EGFP-B1+/+ and EGFP-B1−/− mice to compare their V-ATPase subunit protein levels. We report that V-ATPase A, E1, and H subunits are all significantly downregulated in EGFP-B1−/− mice, while the B2 protein level is considerably increased in these animals. We conclude that under baseline conditions B2 upregulation compensates for the lack of B1 and is sufficient to maintain basal acid-base homeostasis, even when other V-ATPase subunits are downregulated.


2008 ◽  
Vol 295 (5) ◽  
pp. G953-G964 ◽  
Author(s):  
N. J. Skill ◽  
N. G. Theodorakis ◽  
Y. N. Wang ◽  
J. M. Wu ◽  
E. M. Redmond ◽  
...  

Portal hypertension (PHT) is a common complication of liver cirrhosis and significantly increases morbidity and mortality. Abrogation of PHT using NSAIDs has demonstrated that prostacyclin (PGI2), a direct downstream metabolic product of cyclooxygenase (COX) activity, is an important mediator in the development of experimental and clinical PHT. However, the role of COX isoforms in PGI2 biosynthesis and PHT is not fully understood. Prehepatic PHT was induced by portal vein ligation (PVL) in wild-type, COX-1−/−, and COX-2−/− mice treated with and without COX-2 (NS398) or COX-1 (SC560) inhibitors. Hemodynamic measurements and PGI2 biosynthesis were determined 1–7 days after PVL or sham surgery. Gene deletion or pharmacological inhibition of COX-1 or COX-2 attenuated but did not ameliorate PGI2 biosynthesis after PVL or prevent PHT. In contrast, treatment of COX-1−/− mice with NS398 or COX-2−/− mice with SC560 restricted PGI2 biosynthesis and abrogated the development of PHT following PVL. In conclusion, either COX-1 or COX-2 can mediate elevated PGI2 biosynthesis and the development of experimental prehepatic PHT. Consequently, PGI2 rather then COX-selective drugs are indicated in the treatment of PHT. Identification of additional target sites downstream of COX may benefit the >27,000 patients whom die annually from cirrhosis in the United States alone.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Christopher S Wilcox ◽  
Cheng Wang ◽  
Dan Wang

Background: Angiotensin II (Ang II) increases reactive oxygen species (ROS) and contractions to thromboxane and endothelin-1 (ET-1). Therefore, we tested the hypothesis that cyclooxygenase (COX) and/or thromboxane-prostanoid receptors (TP-Rs) mediate enhanced ROS generations with ET-1 in Ang II-infused mice. Methods: ROS was assessed by urinary 8-isoprotane(8-Iso) excretion and ethedium : dihydroetheldium (DHE) in mesenteric resistance arterioles (MRAs) from wild type (+/+) and littermate COX-1 -/- or TP-R -/- mice infused with vehicle or angiotensin II (Ang II, 400 ng/kg/min for 14 days) (n=6/ group, mean ±SEM). Results: Ang II infusion increased excretion (ng/mg creatine) of TxB 2 (1.3±0.1±1.0±0.1 in COX-1 +/+ mice and 1.9±0.1 vs 1.2±0.1 in TP-R +/+ mice, all P<0.05) and 8-Iso (2.1±0.2 vs 1.4±0.1 in COX-1 +/+ mice and 2.2±0.1 vs 1.4±0.2 in TP-R +/+ mice, all P<0.05) but not in COX-1 -/- or TP-R -/- mice. Ang II enhanced ROS generation (Δunit) with 10 -7 M ET-1 in MRAs from both +/+ mouse genotypes (1.7±0.2 vs 0.1±0.1 in COX-1 +/+ mice and 3.2±0.3 vs 0.1±0.1 in TP-R +/+ mice, all P<0.01). However, this increase in ROS was fully prevented in TP-R-/- mouse vessels (0.3±0.2 vs 0.2±0.1, NS) and in COX-1 +/+ mouse vessels after combined blockade of COX-1( 10 -5 M SC-560) and -2 (paracoxib 10 -5 M) (0.2±0.1 vs 0.1±0.1, NS) and in COX-1 -/- mouse vessels after paracoxib (0.2±0.1 vs 0.2±0.2, NS). Increased ROS generation was only partially prevented in COX-1 -/- mouse vessels (0.5±0.1 vs 0.2±0.2, P<0.05) or in COX-1 +/+ mouse vessels after blockade of COX-1 ( 0.7±0.1 vs 0.1±0.1, NS) or COX-2 (1.0±0.1 vs 0.1±0.1,P<0.05). Conclusions: Increased ROS generation with ET-1 in microvessels from Ang II infused mice depends on products of both COX-1 and -2 that activate TP-Rs. Thus, combined blockade of COX-1 and -2 or TP-Rs may prevent vascular ROS and its many complications during increased Ang II and ET-1, such as hypertension, hypoxia or shock.


2013 ◽  
Vol 7 (3-4) ◽  
pp. E150-155
Author(s):  
Zhi Qin Li ◽  
Yi Zhang ◽  
Qi Li ◽  
Shu Huan Wu ◽  
Chang Yu Sun ◽  
...  

Introduction: Impaired renal water handling in response to neonatally-induced partial unilateral ureteral obstruction (PUUO) may be associated with altered expression of cyclooxygenase (COX). The purpose of the present study was to examine whether long-term PUUO induced at birth was associated with changes of COX-2.Methods: Rats were subjected to PUUO (n = 14) or a sham operation (n = 12) within the first 48 hours of life. The rats were divided into 4 groups: (1) PUUO at 9 weeks (n = 7); (2) the sham operation at 9 weeks (n = 6); (3) PUUO at 15 weeks (n = 7); and (4) the sham operation at 15 weeks (n = 6). Urine and blood samples were collected before sacrificing the animals. Plasma potassium, creatinine and urea, as well as the osmolality and sodium of plasma and urine were tested in each sample. The expression of renal COX-1 and COX-2 was examined at 9 and 15 weeks in rats with neonatally inducedPUUO within the first 48 hours of life by immunoblotting and immunocytochemistry.Results: PUUO caused a marked decrease in urine osmolality and a significant increase in urinary sodium of the obstructed kidney compared with the sham-operated kidney at 9 and 15 weeks. Immunoblotting analysis showed that an abundance of COX-2 in the obstructed kidney significantly increased compared with the non-obstructed kidney and sham-operated kidney at 9 weeks (p < 0.05) and 15 weeks (p < 0.05) in rats with PUUO. In contrast, COX-1 abundance in the obstructed kidney was similar to that in the non-obstructed kidney. Immunocytochemistry confirmed these findings.Conclusion: Renal COX-2 expression in the obstructed kidney is significantly altered in response to neonatally-induced PUUO. A marked increase in COX-2 indicates that it may be an important factor in reducing renal handling of sodium and water in response to PUUO.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1364-1364
Author(s):  
Jhas Bozhena ◽  
Shrivani Sriskanthadevan ◽  
Marko Skrtic ◽  
Mahadeo A. Sukhai ◽  
Veronique Voisin ◽  
...  

Abstract Abstract 1364 Recently, we demonstrated that the anti-bacterial agent tigecycline preferentially induces death in AML and AML stem cells over normal hematopoietic cells through the inhibition of mitochondrial translation. This heightened sensitivity was due to increased mitochondrial mass and reliance on oxidative metabolism in the AML cells compared to normal hematopoietic cells. Here, we sought to better understand the mechanisms of sensitivity and resistance to inhibitors of mitochondrial translation. To establish cells resistant to tigecycline, we exposed TEX leukemia cells to increasing concentrations of tigecycline over 4 months and selected a population of TEX cells resistant to tigecycline (RTEX+TIG) with an IC50 > 24 μM (versus an IC50 of 2.8 + 0.4 μM in wild type cells). We then profiled oxidative metabolism in the resistant cells. In RTEX+TIG cells, levels of Cox-1 and Cox-2, subunits of respiratory complex IV in the electron transport chain that are translated by mitochondrial ribosomes, were undetectable. In contrast, Cox-4 that is part of the same respiratory chain, but translated in the cytoplasm, was only slightly reduced. RTEX+TIG cells also had undetectable levels of oxygen consumption and increased rates of glycolysis compared to wild type cells. Moreover, RTEX+TIG cells were more sensitive to inhibitors of glycolysis and more resistant to hypoxia, thus demonstrating the functional importance to the change in their metabolic status. RTEX+TIG cells also had reduced mitochondrial membrane potential by 44.4 + 7.2% and reduced mitochondrial mass compared to wild type cells. Morphologically, RTEX+TIG cells had abnormally swollen mitochondria with irregular cristae structures. To understand the molecular basis for the metabolic changes in the RTEX+TIG cells, we performed RNA sequencing of the RTEX+TIG cells and wild type TEX cells. Unbiased analysis, by two independent approaches, of the promoter sequences of transcripts upregulated 1.5-fold or greater in RTEX+TIG cells demonstrated a significant over-representation of binding sites for the hypoxia-inducible factor 1 alpha HIF1α :HIF1β transcription factor complex. Specifically, a subset of HIF1α target genes involved in energy balance and cellular metabolism were coordinately upregulated in RTEX+TIG cells, corresponding with our phenotypic observations of the metabolic state of these cells. We validated the upregulation of HIF1α mRNA and protein by Q-RTPCR and immunoblotting. Strikingly, upon removal of tigecycline from RTEX+TIG cells, the cells re-established aerobic metabolism and oxidative phosphorylation. Levels of Cox-1 and Cox-2, oxygen consumption, glycolysis, mitochondrial mass and mitochondrial membrane potential returned to wild type levels. However, HIF1α remained elevated. Upon re-treatment with tigecycline, the cells remained resistant and the glycolytic phenotype was re-established. TEX cells display features of leukemia stem cells, including differentiation, self-renewal and hierarchical organization. Interestingly, RTEX+TIG cells were more differentiated and had reduced stemness compared to the wild type TEX cells. By immunohistochemistry, RTEX+TIG had increased non-specific esterase activity (NSE). In addition, RTEX+TIG cells had reduced clonogenic growth and ability to engraft immune deficient mice compared to wild type cells. Moreover, RNA sequencing data showed reduced expression of stem cell maintenance genes in RTEX+TIG cells. Depletion of mitochondrial DNA via prolonged exposure of parental cell lines to cationic lipophilic agents such as ethidium bromide produces rho-zero cells that have irreversibly lost mitochondrially translated proteins. These cells lack a functional respiratory chain and cannot derive energy from oxidative phosphorylation. Instead, these cells rely on glycolysis for their energy supply. Here, we have produced a reversible rho-zero like metabolic phenotype by sustained inhibition of mitochondrial translation. This work, therefore, highlights mechanisms of metabolic adaption to inhibition of oxidative phosphorylation. Finally, these data suggest a unique role for metabolism in differentiation and stemness in AML. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 293 (6) ◽  
pp. F1805-F1810 ◽  
Author(s):  
Yuqiang Ge ◽  
Kevin A. Strait ◽  
Peter K. Stricklett ◽  
Tianxin Yang ◽  
Donald E. Kohan

Collecting duct (CD)-derived endothelin-1 (ET-1) exerts natriuretic, diuretic, and hypotensive effects. In vitro studies have implicated cyclooxygenase (COX) metabolites, and particularly PGE2, as important mediators of CD ET-1 effects. However, it is unknown whether PGE2 mediates CD-derived ET-1 actions in vivo. To test this, CD ET-1 knockout (KO) and control mice were studied. During normal salt and water intake, urinary PGE2 excretion was unexpectedly increased in CD ET-1 KO mice compared with controls. Salt loading markedly increased urinary PGE2 excretion in both groups of mice; however, the levels remained relatively higher in KO animals. Acutely isolated inner medullary collecting duct (IMCD) from KO mice also had increased PGE2 production. The increased IMCD PGE2 was COX-2 dependent, since NS-398 blocked all PGE2 production. However, increased CD ET-1 KO COX-2 protein or mRNA could not be detected in inner medulla or IMCD, respectively. Inner medullary COX-1 mRNA and protein levels and IMCD COX-1 mRNA levels were unaffected by Na intake or CD ET-1 KO. KO mice on a normal or high-Na diet had elevated blood pressure compared with controls; this difference was not altered by indomethacin or NS-398 treatment. However, indomethacin or NS-398 did increase urine osmolality and reduce urine volume in KO, but not control, animals. In summary, IMCD COX-2-dependent PGE2 production is increased in CD ET-1 KO mice, indicating that CD-derived ET-1 is not a primary regulator of IMCD PGE2. Furthermore, the increased PGE2 in CD ET-1 KO mice partly compensates for loss of ET-1 with respect to maintaining urinary water excretion, but not in blood pressure control.


2005 ◽  
Vol 289 (2) ◽  
pp. F322-F333 ◽  
Author(s):  
Rikke Nørregaard ◽  
Boye L. Jensen ◽  
Chunling Li ◽  
Weidong Wang ◽  
Mark A. Knepper ◽  
...  

Bilateral ureteral obstruction (BUO) is associated with marked changes in the expression of renal aquaporins (AQPs) and sodium transport proteins. To examine the role of prostaglandin in this response, we investigated whether 24-h BUO changed the expression of cyclooxygenases (COX-1 and -2) in the kidney and tested the effect of the selective COX-2 inhibitor parecoxib (5 mg·kg−1·day−1 via osmotic minipumps) on AQPs and sodium transport. Sham and BUO kidneys were analyzed by semiquantitative immunoblotting, and a subset of kidneys was perfusion fixed for immunocytochemistry. BUO caused a significant 14-fold induction of inner medullary COX-2 (14.40 ± 1.8 vs. 1.0 ± 0.4, n = 6; P < 0.0001) and a reduction in medullary tissue osmolality, whereas COX-1 did not change. Immunohistochemistry confirmed increased COX-2 labeling associated with medullary interstitial cells. COX isoforms did not change in cortex/outer medulla after 24-h BUO. In BUO kidneys, inner medullary AQP2 expression was reduced, and this decrease was prevented by parecoxib. In the inner stripe of outer medulla, the type 3 Na+/H+ exchanger (NHE3) and apical Na+-K+-2Cl− cotransporter (BSC-1) were significantly reduced by BUO, and this decrease was significantly attenuated by parecoxib. Immunohistochemistry for AQP2, NHE3, and BSC-1 confirmed the effect of parecoxib. Parecoxib had no significant effect on the Na-K-ATPase α1-subunit, type II Na-Pi cotransporter, or AQP3. In conclusion, acute BUO leads to marked upregulation of COX-2 in inner medulla and selective COX-2 inhibition prevents dysregulation of AQP2, BSC-1, and NHE3 in response to BUO. These data indicate that COX-2 may be an important factor contributing to the impaired renal water and sodium handling in response to BUO.


Sign in / Sign up

Export Citation Format

Share Document