Role of tyrosine phosphorylation in the reassembly of occludin and other tight junction proteins

1999 ◽  
Vol 276 (5) ◽  
pp. F737-F750 ◽  
Author(s):  
Tatsuo Tsukamoto ◽  
Sanjay K. Nigam

After the simulation of anoxia by ATP depletion of MDCK cell monolayers with metabolic inhibitors, the tight junction (TJ) is known to become structurally perturbed, leading to loss of the permeability barrier. Peripheral TJ proteins such as zonula occludens 1 (ZO-1), ZO-2, and cingulin become extremely insoluble and associate into large macromolecular complexes (T. Tsukamoto and S. K. Nigam. J. Biol. Chem. 272: 16133–16139, 1997). For up to 3 h, this process is reversible by ATP repletion. We now show that the reassembly process depends on tyrosine phosphorylation. Recovery of transepithelial electrical resistance in ATP-replete monolayers was markedly inhibited by the tyrosine kinase inhibitor, genistein. Indirect immunofluorescence revealed a decrease in staining of occludin, a membrane component of the TJ, in the region of the TJ after ATP depletion, which reversed after ATP repletion; this reversal process was inhibited by genistein. Examination of the Triton X-100 solubilities of occludin and several nonmembrane TJ proteins revealed a shift of occludin and nonmembrane TJ proteins into an insoluble pool following ATP depletion. These changes reversed after ATP repletion, and the movement of insoluble occludin, ZO-1, and ZO-2 back into the soluble pool was again via a genistein-sensitive mechanism. Rate-zonal centrifugation analyses of detergent-soluble TJ proteins showed a reversible increase in higher density fractions following ATP depletion-repletion, although this change was not affected by genistein. In32P-labeled cells, dephosphorylation of all studied TJ proteins was observed during ATP depletion, followed by rephosphorylation during ATP repletion; rephosphorylation of occludin was inhibited by genistein. Furthermore, during the ATP repletion phase, tyrosine phosphorylation of Triton X-100-insoluble occludin, which is localized at the junction, as well as ZO-2, p130/ZO-3 (though not ZO-1), and other proteins was evident; this tyrosine phosphorylation was completely inhibited by genistein. This indicates that tyrosine kinase activity is necessary for TJ reassembly during ATP repletion and suggests an important role for the tyrosine phosphorylation of occludin, ZO-2, p130/ZO-3, and possibly other proteins in the processes involved in TJ (re)formation.

Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2446-2454
Author(s):  
RL Berkow

Human neutrophils treated with chemotactic peptides or phorbol esters demonstrate tyrosine phosphorylation of a subset of proteins. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induced a time- and concentration-dependent increase in the tyrosine phosphorylation of at least seven proteins. Three of these proteins with approximate molecular weights of 150, 95, and 70 Kd were unique to neutrophils treated with GM-CSF, and were not seen to be phosphorylated on tyrosine in neutrophils treated with the agonists FMLP or PMA, or the cytokines G-CSF and tumor necrosis factor. We found the 150-Kd protein to be localized within the cell particulate fraction and the 95- Kd protein within the cell cytosol. The 70-Kd phosphotyrosine protein was found in both fractions. When the neutrophils were treated with Triton X-100 (Sigma Chemical Co, St Louis, MO) to evaluate cytoskeletal associations of proteins, the 150 phosphotyrosine protein partitioned with the Triton X-100 insoluble cytoskeleton (TICS), and the 70-Kd protein partitioned with both the TICS and Triton X-100 soluble proteins. The GM-CSF-induced tyrosine phosphorylation was inhibited by the tyrosine kinase inhibitor ST638. This was not seen with the putative C-kinase inhibitor, H-7. However, staurosporine was seen to inhibit tyrosine phosphorylation of neutrophil proteins by GM-CSF and in vitro tyrosine kinase activity of isolated neutrophil cytosol and particulate fractions. These data indicate that the three unique GM-CSF- induced phosphotyrosine-containing proteins may be responsible for the unique actions of GM-CSF and that staurosporine inhibits a tyrosine kinase responsible for the phosphorylation of these proteins.


Blood ◽  
1992 ◽  
Vol 79 (9) ◽  
pp. 2446-2454 ◽  
Author(s):  
RL Berkow

Abstract Human neutrophils treated with chemotactic peptides or phorbol esters demonstrate tyrosine phosphorylation of a subset of proteins. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induced a time- and concentration-dependent increase in the tyrosine phosphorylation of at least seven proteins. Three of these proteins with approximate molecular weights of 150, 95, and 70 Kd were unique to neutrophils treated with GM-CSF, and were not seen to be phosphorylated on tyrosine in neutrophils treated with the agonists FMLP or PMA, or the cytokines G-CSF and tumor necrosis factor. We found the 150-Kd protein to be localized within the cell particulate fraction and the 95- Kd protein within the cell cytosol. The 70-Kd phosphotyrosine protein was found in both fractions. When the neutrophils were treated with Triton X-100 (Sigma Chemical Co, St Louis, MO) to evaluate cytoskeletal associations of proteins, the 150 phosphotyrosine protein partitioned with the Triton X-100 insoluble cytoskeleton (TICS), and the 70-Kd protein partitioned with both the TICS and Triton X-100 soluble proteins. The GM-CSF-induced tyrosine phosphorylation was inhibited by the tyrosine kinase inhibitor ST638. This was not seen with the putative C-kinase inhibitor, H-7. However, staurosporine was seen to inhibit tyrosine phosphorylation of neutrophil proteins by GM-CSF and in vitro tyrosine kinase activity of isolated neutrophil cytosol and particulate fractions. These data indicate that the three unique GM-CSF- induced phosphotyrosine-containing proteins may be responsible for the unique actions of GM-CSF and that staurosporine inhibits a tyrosine kinase responsible for the phosphorylation of these proteins.


1999 ◽  
Vol 277 (4) ◽  
pp. F524-F532 ◽  
Author(s):  
Jiuming Ye ◽  
Tatsuo Tsukamoto ◽  
Adam Sun ◽  
Sanjay K. Nigam

The integrity of the tight junction (TJ), which is responsible for the permeability barrier of the polarized epithelium, is disrupted during ischemic injury and must be reestablished for recovery. Recently, with the use of an ATP depletion-repletion model for ischemia and reperfusion injury in Madin-Darby canine kidney cells, TJ proteins such as zonula occludens-1 (ZO-1) were shown to reversibly form large complexes and associate with cytoskeletal proteins (T. Tsukamoto and S. K. Nigam, J. Biol. Chem. 272: 16133–16139, 1997). In this study, we examined the role of intracellular calcium in TJ reassembly after ATP depletion-repletion by employing the cell-permeant calcium chelator 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid-AM (BAPTA-AM). Lowering intracellular calcium during ATP depletion is associated with significant inhibition of the reestablishment of the permeability barrier following ATP repletion as measured by transepithelial electrical resistance and mannitol flux, marked alterations in the subcellular localization of occludin by immunofluorescent analysis, and decreased solubility of ZO-1 and other TJ proteins by Triton X-100 extraction assay, suggesting that lowering intracellular calcium potentiates the interaction of TJ proteins with the cytoskeleton. Coimmunoprecipitation studies indicated that decreased solubility may partly result from the stabilization of large TJ protein-containing complexes with fodrin. Although ionic detergents (SDS and deoxycholate) appeared to cause a dissociation of ZO-1-containing complexes from the cytoskeleton, sucrose gradient analyses of the solubilized proteins suggested that calcium chelation leads to self-association of these complexes. Together, these results raise the possibility that intracellular calcium plays an important facilitatory role in the reassembly of the TJ damaged by ischemic insults. Calcium appears to be necessary for the dissociation of TJ-cytoskeletal complexes, thus permitting functional TJ reassembly and paracellular permeability barrier recovery.


1994 ◽  
Vol 72 (06) ◽  
pp. 937-941 ◽  
Author(s):  
Karim Rezaul ◽  
Shigeru Yanagi ◽  
Kiyonao Sada ◽  
Takanobu Taniguchi ◽  
Hirohei Yamamura

SummaryIt has been demonstrated that activation of platelets by platelet-activating factor (PAF) results in a dramatic increase in tyrosine phosphorylation of several cellular proteins. We report here that p72 syk is a potential candidate for the protein-tyrosine phosphorylation following PAF stimulation in porcine platelets. Immunoprecipitation kinase assay revealed that PAF stimulation resulted in a rapid activation of p72 syk which peaked at 10 s. The level of activation was found to be dose dependent and could be completely inhibited by the PAF receptor antagonist, CV3988. Phosphorylation at the tyrosine residues of p72 syk coincided with activation of yllsyk. Pretreatment of platelets with aspirin and apyrase did not affect PAF induced activation of p72 syk .Furthermore, genistein, a potent protein-tyrosine-kinase inhibitor, diminished PAF-induced p72 syk activation and Ca2+ mobilization as well as platelet aggregation. These results suggest that p72 syk may play a critical role in PAF-induced aggregation, possibly through regulation of Ca2+ mobilization.


2002 ◽  
Vol 283 (4) ◽  
pp. G893-G899 ◽  
Author(s):  
Monica C. Chen ◽  
Travis E. Solomon ◽  
Eduardo Perez Salazar ◽  
Robert Kui ◽  
Enrique Rozengurt ◽  
...  

Previous studies found that epidermal growth factor (EGF) decreased paracellular permeability in gastric mucosa, but the other physiological regulators and the molecular mechanisms mediating these responses remain undefined. We investigated the role of secretin and Src in regulating paracellular permeability because secretin regulates gastric chief cell function and Src mediates events involving the cytoskeletal-membrane interface, respectively. Confluent monolayers were formed from canine gastric epithelial cells in short-term culture on Transwell filter inserts. Resistance was monitored in the presence of secretin with or without specific kinase inhibitors. Tyrosine phosphorylation of Src at Tyr416 was measured with a site-specific phosphotyrosine antibody. Basolateral, but not apical, secretin at concentrations from 1 to 100 nM dose dependently increased resistance; this response was rapid and sustained over hours. PP2 (10 μM), a selective Src tyrosine kinase inhibitor, but not the inactive isomer PP3, abolished the increase in resistance by secretin but only modestly attenuated apical EGF effects. AG-1478 (100 nM), a specific EGF receptor tyrosine kinase inhibitor, attenuated the resistance increase to EGF but not secretin. Secretin, but not EGF, induced tyrosine phosphorylation of Src at Tyr416 in a dose-dependent fashion, with the maximal response observed at 1 min. PP2, but not PP3, dramatically inhibited this tyrosine phosphorylation. Secretin increases paracellular resistance in gastric mucosa through a Src-mediated pathway, while the effect of EGF is Src independent. Src appears to mediate the physiological effects of this Gs-coupled receptor in primary epithelial cells.


1999 ◽  
Vol 112 (9) ◽  
pp. 1365-1373 ◽  
Author(s):  
X. Sai ◽  
K. Naruse ◽  
M. Sokabe

When subjected to uni-axial cyclic stretch (120% in length, 1 Hz), fibroblasts (3Y1) aligned perpendicular to the stretch axis in a couple of hours. Concomitantly with this orienting response, protein tyrosine phosphorylation of cellular proteins (molecular masses of approximately 70 kDa and 120–130 kDa) increased and peaked at 30 minutes. Immuno-precipitation experiments revealed that paxillin, pp125(FAK), and pp130(CAS) were included in the 70 kDa, and 120–130 kDa bands, respectively. Treatment of the cells with herbimycin A, a tyrosine kinase inhibitor, suppressed the stretch induced tyrosine phosphorylation and the orienting response suggesting that certain tyrosine kinases are activated by stretch. We focused on pp60(src), the most abundant tyrosine kinase in fibroblasts. The kinase activity of pp60(src) increased and peaked at 20 minutes after the onset of cyclic stretch. Treatment of the cells with an anti-sense S-oligodeoxynucleotide (S-ODN) against pp60(src), but not the sense S-ODN, inhibited the stretch induced tyrosine phosphorylation and the orienting response. To further confirm the involvement of pp60(src), we performed the same sets of experiments using c-src-transformed 3Y1 (c-src-3Y1) fibroblasts. Cyclic stretch induced a similar orienting response in c-src-3Y1 to that in wild-type 3Y1, but with a significantly faster rate. The time course of the stretch-induced tyrosine phosphorylation was also much faster in c-src-3Y1 than in 3Y1 fibroblasts. These results strongly suggest that cyclic stretch induces the activation of pp60(src) and that pp60(src) is indispensable for the tyrosine phosphorylation of pp130(CAS), pp125(FAK) and paxillin followed by the orienting response in 3Y1 fibroblasts.


1995 ◽  
Vol 108 (3) ◽  
pp. 1165-1174
Author(s):  
K. Jewell ◽  
C. Kapron-Bras ◽  
P. Jeevaratnam ◽  
S. Dedhar

The interaction of cells with components of the extracellular matrix through their integrin receptors results in the stimulation of tyrosine phosphorylation of several proteins, suggesting that these receptors play a key role in signal transduction. Here we report that antibody-mediated ligation and clustering of alpha 3 beta 1 and alpha 6 beta 1/alpha 6 beta 4 integrins resulted in the stimulation of tyrosine phosphorylation of proteins that are specific for each heterodimer. Thus, ligation and clustering of the alpha 3 beta 1 integrin on human prostate carcinoma cells (PC-3) and human umbilical vein endothelial cells (HUVEC) with anti-alpha 3 antibodies resulted in the stimulation of tyrosine phosphorylation of a 55 kDa protein. In contrast, ligation and clustering of the alpha 6 beta 1 integrin on these cells with anti-alpha 6 antibody resulted in the dramatic stimulation of tyrosine phosphorylation of a 90 kDa protein in addition to a 52 kDa protein, and ligation and clustering of alpha 5 beta 1 on HUVEC did not result in the apparent stimulation of tyrosine phosphorylation of any proteins. Clustering with anti-beta 1 antibodies triggered the tyrosine phosphorylation of all of these proteins, whereas ligation and clustering of PC-3 cells with an anti-beta 4 antibody resulted in the tyrosine phosphorylation of a distinct 62 kDa protein. Since the PC-3 cells express both alpha 6 beta 1 and alpha 6 beta 4, these data suggest that these two receptors can transduce distinct signals. All of the phosphorylations could be inhibited by treating the cells with Genistein, a tyrosine kinase inhibitor. Antibody-mediated ligation and clustering of integrins on the two types of cells did not result in the stimulation of tyrosine phosphorylation of pp125 focal adhesion kinase, although this was observed upon cell attachment and spreading on fibronectin, laminin and anti-alpha 3 monoclonal antibody. Collectively, these data demonstrate that cross-linking of different integrin heterodimers can stimulate tyrosine kinase activities, leading to the phosphorylation of distinct proteins, which are also different from those observed when cells are allowed to spread on a matrix.


1995 ◽  
Vol 268 (1) ◽  
pp. C154-C161 ◽  
Author(s):  
G. Bischof ◽  
B. Illek ◽  
W. W. Reenstra ◽  
T. E. Machen

We studied a possible role of tyrosine kinases in the regulation of Ca entry into colonic epithelial cells HT-29/B6 using digital image processing of fura 2 fluorescence. Both carbachol and thapsigargin increased Ca entry to a similar extent and Ca influx was reduced by the tyrosine kinase inhibitor genistein (50 microM). Further experiments were performed in solutions containing 95 mM K to depolarize the membrane potential, and the effects of different inhibitors on influx of Ca, Mn, and Ba were compared. Genistein, but not the inactive analogue daidzein nor the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2- methylpiperazine, decreased entry of all three divalent cations by 47-59%. In high-K solutions, carbachol or thapsigargin both caused intracellular Ca to increase to a plateau of 223 +/- 19 nM. This plateau was reduced by the tyrosine kinase inhibitors genistein (to 95 +/- 8 nM), lavendustin A (to 155 +/- 17 nM), and methyl-2,5-dihydroxycinnamate (to 39 +/- 3 nM). Orthovanadate, a protein tyrosine phosphatase inhibitor, prevented the inhibitory effect of genistein. Ca pumping was unaffected by genistein. Carbachol increased tyrosine phosphorylation (immunoblots with anti-phosphotyrosine antibodies) of 110-, 75-, and 70-kDa proteins, and this phosphorylation was inhibited by genistein. We conclude that carbachol and thapsigargin increase Ca entry, and tyrosine phosphorylation of some key proteins may be important for regulating this pathway.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 876-885 ◽  
Author(s):  
Virgilio Evangelista ◽  
Stefano Manarini ◽  
Rita Sideri ◽  
Serenella Rotondo ◽  
Nicola Martelli ◽  
...  

Abstract Polymorphonuclear leukocyte (PMN) adhesion to activated platelets is important for the recruitment of PMN at sites of vascular damage and thrombus formation. We have recently shown that binding of activated platelets to PMN in mixed cell suspensions under shear involves P-selectin and the activated β2-integrin CD11b/CD18. Integrin activation required signaling mechanisms that were sensitive to tyrosine kinase inhibitors.1 Here we show that mixing activated, paraformaldehyde (PFA)-fixed platelets with PMNs under shear conditions leads to rapid and fully reversible tyrosine phosphorylation of a prominent protein of 110 kD (P∼110). Phosphorylation was both Ca2+ and Mg2+ dependent and was blocked by antibodies against P-selectin or CD11b/CD18, suggesting that both adhesion molecules need to engage with their respective ligands to trigger phosphorylation of P∼110. The inhibition of P∼110 phosphorylation by tyrosine kinase inhibitors correlates with the inhibition of platelet/PMN aggregation. Similar effects were observed when platelets were substituted by P-selectin–transfected Chinese hamster ovary (CHO-P) cells or when PMN were stimulated with P-selectin–IgG fusion protein. CHO-P/PMN mixed-cell aggregation and P-selectin–IgG–triggered PMN/PMN aggregation as well as P∼110 phosphorylation were all blocked by antibodies against P-selectin or CD18. In each case PMN adhesion was sensitive to the tyrosine kinase inhibitor genistein. The antibody PL-1 against P-selectin glycoprotein ligand-1 (PSGL-1) blocked platelet/PMN aggregation, indicating that PSGL-1 was the major tethering ligand for P-selectin in this experimental system. Moreover, engagement of PSGL-1 with a nonadhesion blocking antibody triggered β2-integrin–dependent genistein-sensitive aggregation as well as tyrosine phosphorylation in PMN. This study shows that binding of P-selectin to PSGL-1 triggers tyrosine kinase–dependent mechanisms that lead to CD11b/CD18 activation in PMN. The availability of the β2-integrin to engage with its ligands on the neighboring cells is necessary for the tyrosine phosphorylation of P∼110.


Blood ◽  
1999 ◽  
Vol 93 (3) ◽  
pp. 876-885 ◽  
Author(s):  
Virgilio Evangelista ◽  
Stefano Manarini ◽  
Rita Sideri ◽  
Serenella Rotondo ◽  
Nicola Martelli ◽  
...  

Polymorphonuclear leukocyte (PMN) adhesion to activated platelets is important for the recruitment of PMN at sites of vascular damage and thrombus formation. We have recently shown that binding of activated platelets to PMN in mixed cell suspensions under shear involves P-selectin and the activated β2-integrin CD11b/CD18. Integrin activation required signaling mechanisms that were sensitive to tyrosine kinase inhibitors.1 Here we show that mixing activated, paraformaldehyde (PFA)-fixed platelets with PMNs under shear conditions leads to rapid and fully reversible tyrosine phosphorylation of a prominent protein of 110 kD (P∼110). Phosphorylation was both Ca2+ and Mg2+ dependent and was blocked by antibodies against P-selectin or CD11b/CD18, suggesting that both adhesion molecules need to engage with their respective ligands to trigger phosphorylation of P∼110. The inhibition of P∼110 phosphorylation by tyrosine kinase inhibitors correlates with the inhibition of platelet/PMN aggregation. Similar effects were observed when platelets were substituted by P-selectin–transfected Chinese hamster ovary (CHO-P) cells or when PMN were stimulated with P-selectin–IgG fusion protein. CHO-P/PMN mixed-cell aggregation and P-selectin–IgG–triggered PMN/PMN aggregation as well as P∼110 phosphorylation were all blocked by antibodies against P-selectin or CD18. In each case PMN adhesion was sensitive to the tyrosine kinase inhibitor genistein. The antibody PL-1 against P-selectin glycoprotein ligand-1 (PSGL-1) blocked platelet/PMN aggregation, indicating that PSGL-1 was the major tethering ligand for P-selectin in this experimental system. Moreover, engagement of PSGL-1 with a nonadhesion blocking antibody triggered β2-integrin–dependent genistein-sensitive aggregation as well as tyrosine phosphorylation in PMN. This study shows that binding of P-selectin to PSGL-1 triggers tyrosine kinase–dependent mechanisms that lead to CD11b/CD18 activation in PMN. The availability of the β2-integrin to engage with its ligands on the neighboring cells is necessary for the tyrosine phosphorylation of P∼110.


Sign in / Sign up

Export Citation Format

Share Document